温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
福建省
龙海
一中
第二次
调研
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数y=sin2x的图象可能是
A. B.
C. D.
2.若函数在时取得极值,则( )
A. B. C. D.
3.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是( )
A.乙的数据分析素养优于甲
B.乙的数学建模素养优于数学抽象素养
C.甲的六大素养整体水平优于乙
D.甲的六大素养中数据分析最差
4.2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )
A. B. C. D.
5.若实数满足不等式组则的最小值等于( )
A. B. C. D.
6.若函数有两个极值点,则实数的取值范围是( )
A. B. C. D.
7.在中,是的中点,,点在上且满足,则等于( )
A. B. C. D.
8.已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为
A. B. C. D.
9.如图,长方体中,,,点T在棱上,若平面.则( )
A.1 B. C.2 D.
10.在区间上随机取一个数,使得成立的概率为等差数列的公差,且,若,则的最小值为( )
A.8 B.9 C.10 D.11
11.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是( )
A.年该工厂的棉签产量最少
B.这三年中每年抽纸的产量相差不明显
C.三年累计下来产量最多的是口罩
D.口罩的产量逐年增加
12.已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为( )
A. B. C. D.2
二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量满足,且,则 _________.
14.已知函数的最大值为3,的图象与y轴的交点坐标为,其相邻两条对称轴间的距离为2,则
15.的展开式中的系数为____.
16.我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.
(1)求的通项公式;
(2)若数列满足,求的值.
18.(12分)已知在等比数列中,.
(1)求数列的通项公式;
(2)若,求数列前项的和.
19.(12分)如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.
(Ⅰ)求证;
(Ⅱ)若平面.
①求二面角的大小;
②在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.
20.(12分)的内角的对边分别为,且.
(1)求;
(2)若,点为边的中点,且,求的面积.
21.(12分)在平面直角坐标系xoy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系。已知曲线C的极坐标方程为,过点的直线l的参数方程为(为参数),直线l与曲线C交于M、N两点。
(1)写出直线l的普通方程和曲线C的直角坐标方程:
(2)若成等比数列,求a的值。
22.(10分)选修4-5:不等式选讲
已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.
详解:令,
因为,所以为奇函数,排除选项A,B;
因为时,,所以排除选项C,选D.
点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.
2、D
【答案解析】
对函数求导,根据函数在时取得极值,得到,即可求出结果.
【题目详解】
因为,所以,
又函数在时取得极值,
所以,解得.
故选D
【答案点睛】
本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.
3、C
【答案解析】
根据题目所给图像,填写好表格,由表格数据选出正确选项.
【题目详解】
根据雷达图得到如下数据:
数学抽象
逻辑推理
数学建模
直观想象
数学运算
数据分析
甲
4
5
4
5
4
5
乙
3
4
3
3
5
4
由数据可知选C.
【答案点睛】
本题考查统计问题,考查数据处理能力和应用意识.
4、A
【答案解析】
根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.
【题目详解】
设事件A:检测5个人确定为“感染高危户”,
事件B:检测6个人确定为“感染高危户”,
∴,.
即
设,则
∴
当且仅当即时取等号,即.
故选:A.
【答案点睛】
本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.
5、A
【答案解析】
首先画出可行域,利用目标函数的几何意义求的最小值.
【题目详解】
解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)
由得,
由得,平移,
易知过点时直线在上截距最小,
所以.
故选:A.
【答案点睛】
本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.
6、A
【答案解析】
试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.
考点:利用导数研究函数极值点
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.
(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.
7、B
【答案解析】
由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.
【题目详解】
解:∵M是BC的中点,知AM是BC边上的中线,
又由点P在AM上且满足
∴P是三角形ABC的重心
∴
又∵AM=1
∴
∴
故选B.
【答案点睛】
判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.
8、A
【答案解析】
求出抛物线的焦点坐标,利用抛物线的定义,转化求出比值,,
求出等式左边式子的范围,将等式右边代入,从而求解.
【题目详解】
解:由题意可得,焦点F(1,0),准线方程为x=−1,
过点P作PM垂直于准线,M为垂足,
由抛物线的定义可得|PF|=|PM|=x+1,
记∠KPF的平分线与轴交于
根据角平分线定理可得,
,
当时,,
当时,,
,
综上:.
故选:A.
【答案点睛】
本题主要考查抛物线的定义、性质的简单应用,直线的斜率公式、利用数形结合进行转化是解决本题的关键.考查学生的计算能力,属于中档题.
9、D
【答案解析】
根据线面垂直的性质,可知;结合即可证明,进而求得.由线段关系及平面向量数量积定义即可求得.
【题目详解】
长方体中,,
点T在棱上,若平面.
则,
则,所以,
则,
所以
,
故选:D.
【答案点睛】
本题考查了直线与平面垂直的性质应用,平面向量数量积的运算,属于基础题.
10、D
【答案解析】
由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件,求得,从而求得,解不等式求得结果.
【题目详解】
由题意,本题符合几何概型,区间长度为6,
使得成立的的范围为,区间长度为2,
故使得成立的概率为,
又,,,
令,则有,故的最小值为11,
故选:D.
【答案点睛】
该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.
11、C
【答案解析】
根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.
【题目详解】
由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;
由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.
故选:C.
【答案点睛】
本题考查堆积图的应用,考查数据处理能力,属于基础题.
12、A
【答案解析】
设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.
【题目详解】
设点的坐标为,有,得.
双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,