温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
福建省
三明市
永安
中高
第一次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义在上的偶函数,对,,且,有成立,已知,,,则,,的大小关系为( )
A. B. C. D.
2.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,若点在角的终边上,则( )
A. B. C. D.
3.盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )
A., B.,
C., D.,
4.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式).
A.2寸 B.3寸 C.4寸 D.5寸
5.复数的共轭复数在复平面内所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为( )
A. B. C. D.
7.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )
A.多1斤 B.少1斤 C.多斤 D.少斤
8.已知下列命题:
①“”的否定是“”;
②已知为两个命题,若“”为假命题,则“”为真命题;
③“”是“”的充分不必要条件;
④“若,则且”的逆否命题为真命题.
其中真命题的序号为( )
A.③④ B.①② C.①③ D.②④
9.记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为( )
A.2阶区间 B.3阶区间 C.4阶区间 D.5阶区间
10.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( )
A.甲班的数学成绩平均分的平均水平高于乙班
B.甲班的数学成绩的平均分比乙班稳定
C.甲班的数学成绩平均分的中位数高于乙班
D.甲、乙两班这5次数学测试的总平均分是103
11.若双曲线的渐近线与圆相切,则双曲线的离心率为( )
A.2 B. C. D.
12.是恒成立的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
二、填空题:本题共4小题,每小题5分,共20分。
13.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.
14.已知全集,,则________.
15.已知函数为奇函数,则______.
16.已知各棱长都相等的直三棱柱(侧棱与底面垂直的棱柱称为直棱柱)所有顶点都在球的表面上.若球的表面积为则该三棱柱的侧面积为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,平面分别是上的动点,且.
(1)若平面与平面的交线为,求证:;
(2)当平面平面时,求平面与平面所成的二面角的余弦值.
18.(12分)已知椭圆的离心率为是椭圆的一个焦点,点,直线的斜率为1.
(1)求椭圆的方程;
(1)若过点的直线与椭圆交于两点,线段的中点为,是否存在直线使得?若存在,求出的方程;若不存在,请说明理由.
19.(12分)在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
20.(12分)已知直线的参数方程:(为参数)和圆的极坐标方程:
(1)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;
(2)已知点,直线与圆相交于、两点,求的值.
21.(12分)设点分别是椭圆的左,右焦点,为椭圆上任意一点,且的最小值为1.
(1)求椭圆的方程;
(2)如图,直线与轴交于点,过点且斜率的直线与椭圆交于两点,为线段的中点,直线交直线于点,证明:直线.
22.(10分)已知函数(),是的导数.
(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;
(2)已知函数在上单调递减,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
根据偶函数的性质和单调性即可判断.
【题目详解】
解:对,,且,有
在上递增
因为定义在上的偶函数
所以在上递减
又因为,,
所以
故选:A
【答案点睛】
考查偶函数的性质以及单调性的应用,基础题.
2、D
【答案解析】
由题知,又,代入计算可得.
【题目详解】
由题知,又.
故选:D
【答案点睛】
本题主要考查了三角函数的定义,诱导公式,二倍角公式的应用求值.
3、C
【答案解析】
根据古典概型概率计算公式,计算出概率并求得数学期望,由此判断出正确选项.
【题目详解】
表示取出的为一个白球,所以.表示取出一个黑球,,所以.
表示取出两个球,其中一黑一白,,表示取出两个球为黑球,,表示取出两个球为白球,,所以.所以,.
故选:C
【答案点睛】
本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.
4、B
【答案解析】
试题分析:根据题意可得平地降雨量,故选B.
考点:1.实际应用问题;2.圆台的体积.
5、D
【答案解析】
由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.
【题目详解】
,,对应点为,在第四象限.
故选:D.
【答案点睛】
本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.
6、C
【答案解析】
以D为原点,DA,DC,DD1 分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值.
【题目详解】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则,,,
取平面的法向量为,
设直线EF与平面AA1D1D所成角为θ,则sinθ=|,
直线与平面所成角的正弦值为.
故选C.
【答案点睛】
本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题.
7、C
【答案解析】
设这十等人所得黄金的重量从大到小依次组成等差数列 则 由等差数列的性质得 ,
故选C
8、B
【答案解析】
由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.
【题目详解】
“”的否定是“”,正确;
已知为两个命题,若“”为假命题,则“”为真命题,正确;
“”是“”的必要不充分条件,错误;
“若,则且”是假命题,则它的逆否命题为假命题,错误.
故选:B.
【答案点睛】
本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.
9、D
【答案解析】
可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解
【题目详解】
当且时,.令得.可得和的变化情况如下表:
令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间.
故选:D
【答案点睛】
本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难题
10、D
【答案解析】
计算两班的平均值,中位数,方差得到正确,两班人数不知道,所以两班的总平均分无法计算,错误,得到答案.
【题目详解】
由题意可得甲班的平均分是104,中位数是103,方差是26.4;
乙班的平均分是102,中位数是101,方差是37.6,则A,B,C正确.
因为甲、乙两班的人数不知道,所以两班的总平均分无法计算,故D错误.
故选:.
【答案点睛】
本题考查了茎叶图,平均值,中位数,方差,意在考查学生的计算能力和应用能力.
11、C
【答案解析】
利用圆心到渐近线的距离等于半径即可建立间的关系.
【题目详解】
由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,
所以,.
故选:C.
【答案点睛】
本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.
12、A
【答案解析】
设 成立;反之,满足 ,但,故选A.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.
【题目详解】
根据题中的程序框图可得:,
执行循环体,,
不满足条件,执行循环体,,
此时,满足条件,退出循环,输出的值为.
故答案为:
【答案点睛】
本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.
14、
【答案解析】
利用集合的补集运算即可求解.
【题目详解】
由全集,,
所以.
故答案为:
【答案点睛】
本题考查了集合的补集运算,需理解补集的概念,属于基础题.
15、
【答案解析】
利用奇函数的定义得出,结合对数的运算性质可求得实数的值.
【题目详解】
由于函数为奇函数,则,即,
,整理得,解得.
当时,真数,不合乎题意;
当时,,解不等式,解得或,此时函数的定义域为,定义域关于原点对称,合乎题意.
综上所述,.
故答案为:.
【答案点睛】
本题考查利用函数的奇偶性求参数,考查了函数奇偶性的定义和对数运算性质的应用,考查计算能力,属于中等题.
16、
【答案解析】
只要算出直三棱柱的棱长即可,在中,利用即可得到关于x的方程,解方程即可解决.
【题目详解】
由已知,,解得,如图所示,设底面等边三角形中心为,
直三棱柱的棱长为x,则,,故,
即,解得,故三棱柱的侧面积为.
故答案为:.
【答案点睛】
本题考查特殊柱体的外接球问题,考查学生的空间想象能力,是一道中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析;(2)
【答案解析】
(1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;
(2)以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值;
【题目详解】
解:(1)由,
又平面,平面,所以平面.
又平面,且平面平面,
故.
(2)因为平面,所以,又,所以平面,
所以,又,所以.
若平面