温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
福建师范大学
第二
附属中学
第三次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.由曲线围成的封闭图形的面积为( )
A. B. C. D.
2.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是( )
A. B. C. D.
3.已知数列的前项和为,且,,,则的通项公式( )
A. B. C. D.
4.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )
发芽所需天数
1
2
3
4
5
6
7
种子数
4
3
3
5
2
2
1
0
A.2 B.3 C.3.5 D.4
5.点在所在的平面内,,,,,且,则( )
A. B. C. D.
6.已知集合,则元素个数为( )
A.1 B.2 C.3 D.4
7.复数( )
A. B. C.0 D.
8.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为( )
A. B. C. D.
9.若非零实数、满足,则下列式子一定正确的是( )
A. B.
C. D.
10.已知函数,,的零点分别为,,,则( )
A. B.
C. D.
11.执行如图所示的程序框图,则输出的( )
A.2 B.3 C. D.
12.设为的两个零点,且的最小值为1,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.的展开式中所有项的系数和为______,常数项为______.
14.设、满足约束条件,若的最小值是,则的值为__________.
15.若展开式的二项式系数之和为64,则展开式各项系数和为__________.
16.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)选修4-5:不等式选讲
设函数.
(1)当时,求不等式的解集;
(2)若在上恒成立,求实数的取值范围.
18.(12分)已知三棱锥P-ABC(如图一)的平面展开图(如图二)中,四边形ABCD为边长等于的正方形,和均为正三角形,在三棱锥P-ABC中:
(1)证明:平面平面ABC;
(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求直线MA与平面MBC所成角的正弦值.
19.(12分)已知函数,不等式的解集为.
(1)求实数,的值;
(2)若,,,求证:.
20.(12分)本小题满分14分)
已知曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被曲线截得的线段的长度
21.(12分)已知椭圆的右焦点为,离心率为.
(1)若,求椭圆的方程;
(2)设直线与椭圆相交于、两点,、分别为线段、的中点,若坐标原点在以为直径的圆上,且,求的取值范围.
22.(10分)在平面直角坐标系中,已知直线的参数方程为(为参数)和曲线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求直线和曲线的极坐标方程;
(2)在极坐标系中,已知点是射线与直线的公共点,点是与曲线的公共点,求的最大值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
先计算出两个图像的交点分别为,再利用定积分算两个图形围成的面积.
【题目详解】
封闭图形的面积为.选A.
【答案点睛】
本题考察定积分的应用,属于基础题.解题时注意积分区间和被积函数的选取.
2、B
【答案解析】
先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.
【题目详解】
设直线与圆相切于点,
因为是以圆的直径为斜边的圆内接三角形,所以,
又因为圆与直线的切点为,所以,
又,所以,
因此,
因此有,
所以,因此渐近线的方程为.
故选B
【答案点睛】
本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.
3、C
【答案解析】
利用证得数列为常数列,并由此求得的通项公式.
【题目详解】
由,得,可得().
相减得,则(),又
由,,得,所以,所以为常
数列,所以,故.
故选:C
【答案点睛】
本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.
4、C
【答案解析】
根据表中数据,即可容易求得中位数.
【题目详解】
由图表可知,种子发芽天数的中位数为,
故选:C.
【答案点睛】
本题考查中位数的计算,属基础题.
5、D
【答案解析】
确定点为外心,代入化简得到,,再根据计算得到答案.
【题目详解】
由可知,点为外心,
则,,又,
所以①
因为,②
联立方程①②可得,,,因为,
所以,即.
故选:
【答案点睛】
本题考查了向量模长的计算,意在考查学生的计算能力.
6、B
【答案解析】
作出两集合所表示的点的图象,可得选项.
【题目详解】
由题意得,集合A表示以原点为圆心,以2为半径的圆,集合B表示函数的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A和点B,所以两个集合有两个公共元素,所以元素个数为2,
故选:B.
【答案点睛】
本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.
7、C
【答案解析】略
8、C
【答案解析】
试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以
,故C为正确答案.
考点:异面直线所成的角.
9、C
【答案解析】
令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.
【题目详解】
令,则,,,,
,因此,.
故选:C.
【答案点睛】
本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.
10、C
【答案解析】
转化函数,,的零点为与,,的交点,数形结合,即得解.
【题目详解】
函数,,的零点,即为与,,的交点,
作出与,,的图象,
如图所示,可知
故选:C
【答案点睛】
本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.
11、B
【答案解析】
运行程序,依次进行循环,结合判断框,可得输出值.
【题目详解】
起始阶段有,,
第一次循环后,,
第二次循环后,,
第三次循环后,,
第四次循环后,,
所有后面的循环具有周期性,周期为3,
当时,再次循环输出的,,此时,循环结束,输出,
故选:B
【答案点睛】
本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.
12、A
【答案解析】
先化简已知得,再根据题意得出f(x)的最小值正周期T为1×2,再求出ω的值.
【题目详解】
由题得,
设x1,x2为f(x)=2sin(ωx﹣)(ω>0)的两个零点,且的最小值为1,
∴=1,解得T=2;
∴=2,
解得ω=π.
故选A.
【答案点睛】
本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、3 -260
【答案解析】
(1)令求得所有项的系数和; (2)先求出展开式中的常数项与含的系数,再求展开式中的常数项.
【题目详解】
将代入,得所有项的系数和为3.
因为的展开式中含的项为,的展开式中含常数项,所以的展开式中的常数项为.
故答案为:3; -260
【答案点睛】
本题考查利用二项展开式的通项公式解决二项展开式的特殊项问题,属于基础题.
14、
【答案解析】
画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.
【题目详解】
作出不等式组所表示的可行域如下图所示:
联立,解得,则点.
由得,显然当直线过时,该直线轴上的截距最小,此时最小,
,解得.
故答案为:.
【答案点睛】
本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.
15、1
【答案解析】
由题意得展开式的二项式系数之和求出的值,然后再计算展开式各项系数的和.
【题目详解】
由题意展开式的二项式系数之和为,即,故,令,则展开式各项系数的和为.
故答案为:
【答案点睛】
本题考查了二项展开式的二项式系数和项的系数和问题,需要运用定义加以区分,并能够运用公式和赋值法求解结果,需要掌握解题方法.
16、0
【答案解析】
由题意,列方程组可求,即求.
【题目详解】
∵在点处的切线方程为,
,代入得①.
又②.
联立①②解得:.
.
故答案为:0.
【答案点睛】
本题考查导数的几何意义,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)
【答案解析】
(1)当时,将原不等式化简后两边平方,由此解出不等式的解集.(2)对分成三种情况,利用零点分段法去绝对值,将表示为分段函数的形式,根据单调性求得的取值范围.
【题目详解】
(1)时,可得,即,
化简得:,所以不等式的解集为.
(2)①当时,由函数单调性可得
,解得;
②当时,,所以符合题意;
③当时,由函数单调性可得,
,解得
综上,实数的取值范围为
【答案点睛】
本小题主要考查含有绝对值不等式的解法,考查不等式恒成立问题的求解,属于中档题.
18、(1)见解析(2)
【答案解析】
(1) 设的中点为,连接.由展开图可知,,.为的中点,则有,根据勾股定理可证得,
则平面,即可证得平面平面.
(2) 由线面成角的定义可知是直线与平面所成的角,
且,最大即为最短时,即是的中点
建立空间直角坐标系,求出与平面的法向量利用公式即可求得结果.
【题目详解】
(1)设AC的中点为O,连接BO,PO.
由题意,得,,.
在中,,O为AC的中点,,
在中,,,,,.
,平面,平面ABC,
平面PAC,平面平面ABC.
(2)由(1)知,,,平面PAC,
是直线BM与平面PAC所成的角,
且,
当OM最短时,即M是PA的中点时,最大.
由平面ABC,,
,,
于是以OC,OB,OD所在直线分别为x轴,y轴,z轴建立如图示空间直角坐标系,
则,
,
设平面MBC的法向量为,直线MA与平面MBC所成角为,
则由得:.
令,得,,即.
则.
直线MA与平面MBC所成角的正弦值为.
【答案点睛】
本题考查面面垂直的证明,考查线面成角问题,借助空间向量是解决线面成角问题的关键,难度一般.
19、(1),.(2)见解析
【答案解析】
(1)分三种情况讨论即可
(2)将,的值代入,然后利用均值定理即可.
【题目详解】
解:(1)不等式可化为.
即有或或.
解得,或或.
所以不等式的解集为,故,.
(2)由(1)知,,即,
由,得,,
当