分享
2023年g31096113相互独立事件同时发生的概率doc高中数学.docx
下载文档

ID:1303521

大小:53.03KB

页数:5页

格式:DOCX

时间:2023-04-19

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 g31096113 相互 独立 事件 同时 发生 概率 doc 高中数学
11.3 相互独立事件同时发生的概率 ●高考大纲 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 一、知识梳理 1.相互独立事件:事件A是否发生对事件B发生的概率没有影响,这样的两个事件叫相互独立事件. 2.独立重复实验:如果在一次试验中某事件发生的概率为p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为Pn(k)=Cpk(1-p)n-k. 3.关于相互独立事件也要抓住以下特征加以理解: 第一,相互独立也是研究两个事件的关系; 第二,所研究的两个事件是在两次试验中得到的; 第三,两个事件相互独立是从“一个事件的发生对另一个事件的发生的概率没有影响〞来确定的. 4.互斥事件与相互独立事件是有区别的: 两事件互斥是指同一次试验中两事件不能同时发生,两事件相互独立是指不同试验下,二者互不影响;两个相互独立事件不一定互斥,即可能同时发生,而互斥事件不可能同时发生. 5.事件A与B的积记作A·B,A·B表示这样一个事件,即A与B同时发生. 当A和B是相互独立事件时,事件A·B满足乘法公式P(A·B)=P(A)·P(B),还要弄清·,的区别. ·表示事件与同时发生,因此它们的对立事件A与B同时不发生,也等价于A与B至少有一个发生的对立事件即,因此有·≠,但·=. 二、根底训练 【例1】 把n个不同的球随机地放入编号为1,2,…,m的m个盒子内,求1号盒恰有r个球的概率. 【例2】 假设每一架飞机引擎在飞行中故障率为1-P,且各引擎是否故障是独立的,如果至少50%的引擎能正常运行,飞机就可以成功地飞行,问对于多大的P而言,4引擎飞机比2引擎的飞机更为平安? 【例3】(全国卷Ⅲ)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125, (Ⅰ)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少; (Ⅱ)计算这个小时内至少有一台需要照顾的概率. 三、例题剖析 【例1】 (2022年广州模拟题)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10张票中任抽1张. (1)两人都抽到足球票的概率是多少 (2)两人中至少有1人抽到足球票的概率是多少 【例2】 有外形相同的球分别装在三个不同的盒子中,每个盒子中有10个球.其中第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规那么进行:先在第一个盒子中任取一个球,假设取得标有字母A的球,那么在第二个盒子中任取一球;假设第一次取得标有字母B的球,那么在第三个盒子中任取一球.如果第二次取得的球是红球,那么称试验成功,求试验成功的概率. . 【例3】 (2022年福州模拟题)冰箱中放有甲、乙两种饮料各5瓶,每次饮用时从中任意取1瓶甲种或乙种饮料,取用甲种或乙种饮料的概率相等. (1)求甲种饮料饮用完毕而乙种饮料还剩下3瓶的概率; (2)求甲种饮料被饮用瓶数比乙种饮料被饮用瓶数至少多4瓶的概率. 【例4】 (2022年南京模拟题)一个通讯小组有两套设备,只要其中有一套设备能正常工作,就能进行通讯.每套设备由3个部件组成,只要其中有一个部件出故障,这套设备就不能正常工作.如果在某一时间段内每个部件不出故障的概率为p,计算在这一时间段内, (1)恰有一套设备能正常工作的概率;2p3-2p6 (2)能进行通讯的概率. 2p3-p6 【例5】(江西卷)A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否那么B赢得A一张卡片,如果某人已赢得所有卡片,那么游戏终止.求掷硬币的次数不大于7次时游戏终止的概率. 〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓〓 四、同步练习 g3.1096相互独立事件同时发生的概率 1.假设A与B相互独立,那么下面不相互独立事件有A A.A与 B.A与 C. 与B D. 与 2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,那么这段时间内两地都下雨的概率是D A.0.12 B.0.88 C.0.28 D.0.42 3.(2022年辽宁,5)甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是B A.p1p2 B.p1(1-p2)+p2(1-p1) C.1-p1p2 D.1-(1-p1)(1-p2) 4.将一枚硬币连掷5次,如果出现k次正面的概率等于出现k+1次正面的概率,那么k的值为C A.0 B.1 C.2 D.3 5.从应届高中生中选出飞行员,这批学生体型合格的概率为,视力合格的概率为,其他几项标准合格的概率为,从中任选一学生,那么该生三项均合格的概率为(假设三项标准互不影响)C A. B. C. D. 6.一道数学竞赛试题,甲生解出它的概率为,乙生解出它的概率为,丙生解出它的概率为,由甲、乙、丙三人独立解答此题只有一人解出的概率为________. 7.某学生参加一次选拔考试,有5道题,每题10分.他解题的正确率为,假设40分为最低分数线,那么该生被选中的概率是________. 8.某单位订阅群众日报的概率为0.6,订阅齐鲁晚报的概率为0.3,那么至少订阅其中一种报纸的概率为_____0.72___. 9.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是.那么这位司机遇到红灯前,已经通过了两个交通岗的概率是________. 10.(全国卷Ⅱ))甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响,求: (Ⅰ) 前三局比赛甲队领先的概率; (Ⅱ) 本场比赛乙队以取胜的概率. 11. (湖北卷)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换. (Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (Ⅱ)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保存两个有效数字). 12.(2022年湖南)甲、乙、丙三台机床各自独立地加工同一种零件,甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为,甲、丙两台机床加工的零件都是一等品的概率为. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;,, (2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 13.(浙江卷)袋子A和B中装有假设干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p. (Ⅰ) 从A中有放回地摸球,每次摸出一个,共摸5次.(i)恰好有3次摸到红球的概率;(ii)第一次、第三次、第五次摸到红球的概率. (Ⅱ) 假设A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开