温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖南省
长沙市
师大附中
下学
期一模
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:
实施项目
种植业
养殖业
工厂就业
服务业
参加用户比
脱贫率
那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )
A.倍 B.倍 C.倍 D.倍
2.在区间上随机取一个数,使直线与圆相交的概率为( )
A. B. C. D.
3.已知复数,则对应的点在复平面内位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
4.已知为虚数单位,若复数满足,则( )
A. B. C. D.
5.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )
A. B. C. D.
6.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是( )
A. B. C. D.
7.已知函数的一条切线为,则的最小值为( )
A. B. C. D.
8.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )
A.16 B.17 C.18 D.19
9.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )
A. B. C. D.
10.已知复数,其中,,是虚数单位,则( )
A. B. C. D.
11.复数的共轭复数对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
12.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述:
①平面;
②四点、、、可能共面;
③若,则平面平面;
④平面与平面可能垂直.其中正确的是__________.
14.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.
获胜概率
—
0.4
0.3
0.8
获胜概率
0.6
—
0.7
0.5
获胜概率
0.7
0.3
—
0.3
获胜概率
0.2
0.5
0.7
—
则队获得冠军的概率为______.
15.的展开式中的系数为__________(用具体数据作答).
16.已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,,则球的体积为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)讨论的单调性;
(2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:.
18.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线?
(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.
19.(12分)在中,为边上一点,,.
(1)求;
(2)若,,求.
20.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)若射线的极坐标方程为().设与相交于点,与相交于点,求.
21.(12分)如图,在平行四边形中,,,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.
(1)求证:;
(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.
22.(10分)已知函数,(其中,).
(1)求函数的最小值.
(2)若,求证:.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
设贫困户总数为,利用表中数据可得脱贫率,进而可求解.
【题目详解】
设贫困户总数为,脱贫率,
所以.
故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.
故选:B
【答案点睛】
本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.
2、C
【答案解析】
根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.
【题目详解】
因为圆心,半径,直线与圆相交,所以
,解得
所以相交的概率,故选C.
【答案点睛】
本题主要考查了直线与圆的位置关系,几何概型,属于中档题.
3、A
【答案解析】
利用复数除法运算化简,由此求得对应点所在象限.
【题目详解】
依题意,对应点为,在第一象限.
故选A.
【答案点睛】
本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.
4、A
【答案解析】
分析:题设中复数满足的等式可以化为,利用复数的四则运算可以求出.
详解:由题设有,故,故选A.
点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题.
5、B
【答案解析】
函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围.
【题目详解】
由题在上恒成立.即,
的图象永远在的上方,
设与的切点,则,解得,
易知越小,图象越靠上,所以.
故选:B.
【答案点睛】
本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围.
6、B
【答案解析】
因为对A不符合定义域当中的每一个元素都有象,即可排除;
对B满足函数定义,故符合;
对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;
对D因为值域当中有的元素没有原象,故可否定.
故选B.
7、A
【答案解析】
求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.
【题目详解】
,则,取,,故,.
故,故,.
设,,取,解得.
故函数在上单调递减,在上单调递增,故.
故选:.
【答案点睛】
本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.
8、B
【答案解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.
【题目详解】
解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.
若输出 ,则不符合题意,排除;
若输出,则,符合题意.
故选:B.
【答案点睛】
本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.
9、B
【答案解析】
由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.
【题目详解】
抛物线的焦点为,
则,即,
设点的坐标为,点的坐标为,
如图:
∴,
解得,或(舍去),
∴
∴直线的方程为,
设直线与抛物线的另一个交点为,
由,解得或,
∴,
∴,
故直线被截得的弦长为.
故选:B.
【答案点睛】
本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.
10、D
【答案解析】
试题分析:由,得,则,故选D.
考点:1、复数的运算;2、复数的模.
11、A
【答案解析】
试题分析:由题意可得:. 共轭复数为,故选A.
考点:1.复数的除法运算;2.以及复平面上的点与复数的关系
12、D
【答案解析】
分别求出球和圆柱的体积,然后可得比值.
【题目详解】
设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D.
【答案点睛】
本题主要考查几何体的体积求解,侧重考查数学运算的核心素养.
二、填空题:本题共4小题,每小题5分,共20分。
13、①③
【答案解析】
连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论.
【题目详解】
对于命题①,连接、交于点,取的中点、,连接、,如下图所示:
则且,四边形是矩形,且,为的中点,
为的中点,且,且,
四边形为平行四边形,,即,
平面,平面,平面,命题①正确;
对于命题②,,平面,平面,平面,
若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,
则,但四边形为梯形且、为两腰,与相交,矛盾.
所以,命题②错误;
对于命题③,连接、,设,则,
在中,,,则为等腰直角三角形,
且,,,且,
由余弦定理得,,
,又,,平面,
平面,,
,、为平面内的两条相交直线,所以,平面,
平面,平面平面,命题③正确;
对于命题④,假设平面与平面垂直,过点在平面内作,
平面平面,平面平面,,平面,
平面,
平面,,
,,,,,
又,平面,平面,.
,平面,平面,.
,,显然与不垂直,命题④错误.
故答案为:①③.
【答案点睛】
本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.
14、0.18
【答案解析】
根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.
【题目详解】
由表中信息可知,胜C的概率为;
若B进入决赛,B胜D的概率为,则A胜B的概率为;
若D进入决赛,D胜B的概率为,则A胜D的概率为;
由相应的概率公式知,则A获得冠军的概率为.
故答案为:0.18
【答案点睛】
本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.
15、
【答案解析】
利用二项展开式的通项公式可求的系数.
【题目详解】
的展开式的通项公式为,
令,故,故的系数为.
故答案为:.
【答案点睛】
本题考查二项展开式中指定项的系数,注意利用通项公式来计算,本题属于容易题.
16、
【答案解析】
由题意可得三棱锥的三条侧棱两两垂直,则它的外接球就是棱长为的正方体的外接球,求出正方体的对角线的长,就是球的直径,然后求