分享
2023学年湖南省长沙市师大附中高三下学期一模考试数学试题(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 湖南省 长沙市 师大附中 下学 期一模 考试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表: 实施项目 种植业 养殖业 工厂就业 服务业 参加用户比 脱贫率 那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( ) A.倍 B.倍 C.倍 D.倍 2.在区间上随机取一个数,使直线与圆相交的概率为( ) A. B. C. D. 3.已知复数,则对应的点在复平面内位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.已知为虚数单位,若复数满足,则( ) A. B. C. D. 5.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( ) A. B. C. D. 6.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是( ) A. B. C. D. 7.已知函数的一条切线为,则的最小值为( ) A. B. C. D. 8.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( ) A.16 B.17 C.18 D.19 9.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( ) A. B. C. D. 10.已知复数,其中,,是虚数单位,则( ) A. B. C. D. 11.复数的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 12.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述: ①平面; ②四点、、、可能共面; ③若,则平面平面; ④平面与平面可能垂直.其中正确的是__________. 14.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示. 获胜概率 — 0.4 0.3 0.8 获胜概率 0.6 — 0.7 0.5 获胜概率 0.7 0.3 — 0.3 获胜概率 0.2 0.5 0.7 — 则队获得冠军的概率为______. 15.的展开式中的系数为__________(用具体数据作答). 16.已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,,则球的体积为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数. (1)讨论的单调性; (2)若在定义域内是增函数,且存在不相等的正实数,使得,证明:. 18.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C. (1)求C的方程,并说明C是什么曲线? (2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由. 19.(12分)在中,为边上一点,,. (1)求; (2)若,,求. 20.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为. (1)求曲线的普通方程和直线的直角坐标方程; (2)若射线的极坐标方程为().设与相交于点,与相交于点,求. 21.(12分)如图,在平行四边形中,,,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面. (1)求证:; (2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值. 22.(10分)已知函数,(其中,). (1)求函数的最小值. (2)若,求证:. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、B 【答案解析】 设贫困户总数为,利用表中数据可得脱贫率,进而可求解. 【题目详解】 设贫困户总数为,脱贫率, 所以. 故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍. 故选:B 【答案点睛】 本题考查了概率与统计,考查了学生的数据处理能力,属于基础题. 2、C 【答案解析】 根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率. 【题目详解】 因为圆心,半径,直线与圆相交,所以 ,解得 所以相交的概率,故选C. 【答案点睛】 本题主要考查了直线与圆的位置关系,几何概型,属于中档题. 3、A 【答案解析】 利用复数除法运算化简,由此求得对应点所在象限. 【题目详解】 依题意,对应点为,在第一象限. 故选A. 【答案点睛】 本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题. 4、A 【答案解析】 分析:题设中复数满足的等式可以化为,利用复数的四则运算可以求出. 详解:由题设有,故,故选A. 点睛:本题考查复数的四则运算和复数概念中的共轭复数,属于基础题. 5、B 【答案解析】 函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围. 【题目详解】 由题在上恒成立.即, 的图象永远在的上方, 设与的切点,则,解得, 易知越小,图象越靠上,所以. 故选:B. 【答案点睛】 本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围. 6、B 【答案解析】 因为对A不符合定义域当中的每一个元素都有象,即可排除; 对B满足函数定义,故符合; 对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定; 对D因为值域当中有的元素没有原象,故可否定. 故选B. 7、A 【答案解析】 求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案. 【题目详解】 ,则,取,,故,. 故,故,. 设,,取,解得. 故函数在上单调递减,在上单调递增,故. 故选:. 【答案点睛】 本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力. 8、B 【答案解析】 由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可. 【题目详解】 解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数. 若输出 ,则不符合题意,排除; 若输出,则,符合题意. 故选:B. 【答案点睛】 本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答. 9、B 【答案解析】 由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可. 【题目详解】 抛物线的焦点为, 则,即, 设点的坐标为,点的坐标为, 如图: ∴, 解得,或(舍去), ∴ ∴直线的方程为, 设直线与抛物线的另一个交点为, 由,解得或, ∴, ∴, 故直线被截得的弦长为. 故选:B. 【答案点睛】 本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题. 10、D 【答案解析】 试题分析:由,得,则,故选D. 考点:1、复数的运算;2、复数的模. 11、A 【答案解析】 试题分析:由题意可得:. 共轭复数为,故选A. 考点:1.复数的除法运算;2.以及复平面上的点与复数的关系 12、D 【答案解析】 分别求出球和圆柱的体积,然后可得比值. 【题目详解】 设圆柱的底面圆半径为,则,所以圆柱的体积.又球的体积,所以球的体积与圆柱的体积的比,故选D. 【答案点睛】 本题主要考查几何体的体积求解,侧重考查数学运算的核心素养. 二、填空题:本题共4小题,每小题5分,共20分。 13、①③ 【答案解析】 连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论. 【题目详解】 对于命题①,连接、交于点,取的中点、,连接、,如下图所示: 则且,四边形是矩形,且,为的中点, 为的中点,且,且, 四边形为平行四边形,,即, 平面,平面,平面,命题①正确; 对于命题②,,平面,平面,平面, 若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得, 则,但四边形为梯形且、为两腰,与相交,矛盾. 所以,命题②错误; 对于命题③,连接、,设,则, 在中,,,则为等腰直角三角形, 且,,,且, 由余弦定理得,, ,又,,平面, 平面,, ,、为平面内的两条相交直线,所以,平面, 平面,平面平面,命题③正确; 对于命题④,假设平面与平面垂直,过点在平面内作, 平面平面,平面平面,,平面, 平面, 平面,, ,,,,, 又,平面,平面,. ,平面,平面,. ,,显然与不垂直,命题④错误. 故答案为:①③. 【答案点睛】 本题考查立体几何综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题. 14、0.18 【答案解析】 根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解. 【题目详解】 由表中信息可知,胜C的概率为; 若B进入决赛,B胜D的概率为,则A胜B的概率为; 若D进入决赛,D胜B的概率为,则A胜D的概率为; 由相应的概率公式知,则A获得冠军的概率为. 故答案为:0.18 【答案点睛】 本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题. 15、 【答案解析】 利用二项展开式的通项公式可求的系数. 【题目详解】 的展开式的通项公式为, 令,故,故的系数为. 故答案为:. 【答案点睛】 本题考查二项展开式中指定项的系数,注意利用通项公式来计算,本题属于容易题. 16、 【答案解析】 由题意可得三棱锥的三条侧棱两两垂直,则它的外接球就是棱长为的正方体的外接球,求出正方体的对角线的长,就是球的直径,然后求

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开