温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖南省
长沙市
天心
区长
中学
下第
一次
测试
数学试题
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知三棱锥的外接球半径为2,且球心为线段的中点,则三棱锥的体积的最大值为( )
A. B. C. D.
2.如果直线与圆相交,则点与圆C的位置关系是( )
A.点M在圆C上 B.点M在圆C外
C.点M在圆C内 D.上述三种情况都有可能
3.设函数恰有两个极值点,则实数的取值范围是( )
A. B.
C. D.
4.等差数列中,已知,且,则数列的前项和中最小的是( )
A.或 B. C. D.
5.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则( )
A. B.
C.6 D.
6.已知命题若,则,则下列说法正确的是( )
A.命题是真命题
B.命题的逆命题是真命题
C.命题的否命题是“若,则”
D.命题的逆否命题是“若,则”
7.在等差数列中,若,则( )
A.8 B.12 C.14 D.10
8.若直线经过抛物线的焦点,则( )
A. B. C.2 D.
9.已知函数的图像的一条对称轴为直线,且,则的最小值为( )
A. B.0 C. D.
10.已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是
A. B.
C. D.
11.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )
A. B.
C. D.
12.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.在的展开式中,所有的奇数次幂项的系数和为-64,则实数的值为__________.
14.二项式的展开式中项的系数为_____.
15.已知函数有且只有一个零点,则实数的取值范围为__________.
16.设是公差不为0的等差数列的前n项和,且,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从名参保人员中随机抽取名作为样本进行分析,按年龄段分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.
年龄
(单位:岁)
保费
(单位:元)
(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值;
(2)经调查,年龄在之间的老人每人中有人患该项疾病(以此频率作为概率).该病的治疗费为元,如果参保,保险公司补贴治疗费元.某老人年龄岁,若购买该项保险(取中的).针对此疾病所支付的费用为元;若没有购买该项保险,针对此疾病所支付的费用为元.试比较和的期望值大小,并判断该老人购买此项保险是否划算?
18.(12分)在中,角的对边分别为,已知.
(1)求角的大小;
(2)若,求的面积.
19.(12分)某商场为改进服务质量,在进场购物的顾客中随机抽取了人进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:
满意
不满意
男
女
是否有的把握认为顾客购物体验的满意度与性别有关?
若在购物体验满意的问卷顾客中按照性别分层抽取了人发放价值元的购物券.若在获得了元购物券的人中随机抽取人赠其纪念品,求获得纪念品的人中仅有人是女顾客的概率.
附表及公式:.
20.(12分)△的内角的对边分别为,且.
(1)求角的大小
(2)若,△的面积,求△的周长.
21.(12分)某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案规定每日底薪100元,外卖业务每完成一单提成2元;方案规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为七组,整理得到如图所示的频率分布直方图.
(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;
(2)从以往统计数据看,新聘骑手选择日工资方案的概率为,选择方案的概率为.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案的概率,
(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)
22.(10分)已知圆外有一点,过点作直线.
(1)当直线与圆相切时,求直线的方程;
(2)当直线的倾斜角为时,求直线被圆所截得的弦长.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由题可推断出和都是直角三角形,设球心为,要使三棱锥的体积最大,则需满足,结合几何关系和图形即可求解
【题目详解】
先画出图形,由球心到各点距离相等可得,,故是直角三角形,设,则有,又,所以,当且仅当时,取最大值4,要使三棱锥体积最大,则需使高,此时,
故选:C
【答案点睛】
本题考查由三棱锥外接球半径,半径与球心位置求解锥体体积最值问题,属于基础题
2、B
【答案解析】
根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.
【题目详解】
直线与圆相交,
圆心到直线的距离,
即.
也就是点到圆的圆心的距离大于半径.
即点与圆的位置关系是点在圆外.
故选:
【答案点睛】
本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.
3、C
【答案解析】
恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.
【题目详解】
由题意知函数的定义域为,
.
因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.
令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.
故选:C
【答案点睛】
本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.
4、C
【答案解析】
设公差为,则由题意可得,解得,可得.令 ,可得 当时,,当时,,由此可得数列前项和中最小的.
【题目详解】
解:等差数列中,已知,且,设公差为,
则,解得 ,
.
令 ,可得,故当时,,当时,,
故数列前项和中最小的是.
故选:C.
【答案点睛】
本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.
5、D
【答案解析】
先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.
【题目详解】
由题意,则,,得,由定义知,
故选:D.
【答案点睛】
此题考查向量的坐标运算,引入新定义,属于简单题目.
6、B
【答案解析】
解不等式,可判断A选项的正误;写出原命题的逆命题并判断其真假,可判断B选项的正误;利用原命题与否命题、逆否命题的关系可判断C、D选项的正误.综合可得出结论.
【题目详解】
解不等式,解得,则命题为假命题,A选项错误;
命题的逆命题是“若,则”,该命题为真命题,B选项正确;
命题的否命题是“若,则”,C选项错误;
命题的逆否命题是“若,则”,D选项错误.
故选:B.
【答案点睛】
本题考查四种命题的关系,考查推理能力,属于基础题.
7、C
【答案解析】
将,分别用和的形式表示,然后求解出和的值即可表示.
【题目详解】
设等差数列的首项为,公差为,
则由,,得解得,,
所以.故选C.
【答案点睛】
本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.
8、B
【答案解析】
计算抛物线的交点为,代入计算得到答案.
【题目详解】
可化为,焦点坐标为,故.
故选:.
【答案点睛】
本题考查了抛物线的焦点,属于简单题.
9、D
【答案解析】
运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.
【题目详解】
由题意,函数为辅助角,
由于函数的对称轴的方程为,且,
即,解得,所以,
又由,所以函数必须取得最大值和最小值,
所以可设,,
所以,
当时,的最小值,故选D.
【答案点睛】
本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.
10、D
【答案解析】
根据点差法得,再根据焦点坐标得,解方程组得,,即得结果.
【题目详解】
设双曲线的方程为,由题意可得,设,,则的中点为,由且,得 , ,即,联立,解得,,故所求双曲线的方程为.故选D.
【答案点睛】
本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.
11、D
【答案解析】
设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.
【题目详解】
由题意,设,则,即小正六边形的边长为,
所以,,,在中,
由余弦定理得,
即,解得,
所以,大正六边形的边长为,
所以,小正六边形的面积为,
大正六边形的面积为,
所以,此点取自小正六边形的概率.
故选:D.
【答案点睛】
本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题.
12、D
【答案解析】
取AC中点N,由题意得即为二面角的平面角,过点B作于O,易得点O为的中心,则三棱锥的外接球球心在直线BO上,设球心为,半径为,列出方程即可得解.
【题目详解】
如图,由题意易知与均为正三角形,取AC中点N,连接BN,DN,
则,,即为二面角的平面角,
过点B作于O,则平面ACD,
由,可得,,,
即点O为的中心,
三棱锥的外接球球心在直线BO上,设球心为,半径为,
,,
解得,
三棱锥的外接球的表面积为.
故选:D.
【答案点睛】
本题考查了立体图形外接球表面积的求解,考查了空间想象能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、3或-1
【答案解析】
设,分别令、,两式相减即可得,即可得解.
【题目详解】
设,
令,则①,
令,则②,
则①-②得,
则,解得或.
故答案为:3或-1.
【答案点睛】
本题考查了二项式定理的应用,考查了运算能力,属于中档题.
14、15
【答案解析】
由题得,,令,解得,代入可得展开