温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖南省
益阳市
桃江县
下学
联考
数学试题
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线C的两条渐近线的夹角为60°,则双曲线C的方程不可能为( )
A. B. C. D.
2.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于( )
A. B. C. D.
3.已知角的终边经过点,则的值是
A.1或 B.或 C.1或 D.或
4.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足( )
A. B. C. D.
5.连接双曲线及的4个顶点的四边形面积为,连接4个焦点的四边形的面积为,则当取得最大值时,双曲线的离心率为( )
A. B. C. D.
6.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )
A. B. C. D.
7.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )
A. B. C. D.
8.在平面直角坐标系中,将点绕原点逆时针旋转到点,设直线与轴正半轴所成的最小正角为,则等于( )
A. B. C. D.
9.过双曲线 的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为( )
A. B. C. D.
10.设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则( )
A. B. C. D.
11.过抛物线的焦点作直线与抛物线在第一象限交于点A,与准线在第三象限交于点B,过点作准线的垂线,垂足为.若,则( )
A. B. C. D.
12.阅读如图的程序框图,运行相应的程序,则输出的的值为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.,则f(f(2))的值为____________.
14.曲线在点处的切线方程为________.
15.某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,,,,,,得到的频率分布直方图如图所示,则下列说法中正确的是________(填序号).
①;
②这名学生中数学成绩在分以下的人数为;
③这名学生数学成绩的中位数约为;
④这名学生数学成绩的平均数为.
16.如图,在梯形中,∥,分别是的中点,若,则的值为___________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知在中,角,,的对边分别为,,,的面积为.
(1)求证:;
(2)若,求的值.
18.(12分)在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为ρ=2cos θ,直线l的参数方程为 (t为参数,α为直线的倾斜角).
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C有唯一的公共点,求角α的大小.
19.(12分)如图,在矩形中,,,点是边上一点,且,点是的中点,将沿着折起,使点运动到点处,且满足.
(1)证明:平面;
(2)求二面角的余弦值.
20.(12分)设数列满足,.
(1)求数列的通项公式;
(2)设,求数列的前项和.
21.(12分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.
(1)求点的轨迹的方程;
(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.
22.(10分)如图,在四棱锥中,四边形为正方形,平面,点是棱的中点,,.
(1)若,证明:平面平面;
(2)若三棱锥的体积为,求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
判断出已知条件中双曲线的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.
【题目详解】
两条渐近线的夹角转化为双曲渐近线与轴的夹角时要分为两种情况.依题意,双曲渐近线与轴的夹角为30°或60°,双曲线的渐近线方程为或.A选项渐近线为,B选项渐近线为,C选项渐近线为,D选项渐近线为.所以双曲线的方程不可能为.
故选:C
【答案点睛】
本小题主要考查双曲线的渐近线方程,属于基础题.
2、D
【答案解析】
以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,
建立空间直角坐标系.求解平面的法向量,利用线面角的向量公式即得解.
【题目详解】
如图所示的直四棱柱,,取中点,
以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,
建立空间直角坐标系.
设,则,
.
设平面的法向量为,
则取,
得.
设直线与平面所成角为,
则,
,
∴直线与平面所成角的正切值等于
故选:D
【答案点睛】
本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.
3、B
【答案解析】
根据三角函数的定义求得后可得结论.
【题目详解】
由题意得点与原点间的距离.
①当时,,
∴,
∴.
②当时,,
∴,
∴.
综上可得的值是或.
故选B.
【答案点睛】
利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可.
4、D
【答案解析】
由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围
【题目详解】
解:由题意方程的实数根叫做函数的“新驻点”,
对于函数,由于,
,
设,该函数在为增函数,
, ,
在上有零点,
故函数的“新驻点”为,那么
故选:.
【答案点睛】
本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题..
5、D
【答案解析】
先求出四个顶点、四个焦点的坐标,四个顶点构成一个菱形,求出菱形的面积,四个焦点构成正方形,求出其面积,利用重要不等式求得取得最大值时有,从而求得其离心率.
【题目详解】
双曲线与互为共轭双曲线,
四个顶点的坐标为,四个焦点的坐标为,
四个顶点形成的四边形的面积,
四个焦点连线形成的四边形的面积,
所以,
当取得最大值时有,,离心率,
故选:D.
【答案点睛】
该题考查的是有关双曲线的离心率的问题,涉及到的知识点有共轭双曲线的顶点,焦点,菱形面积公式,重要不等式求最值,等轴双曲线的离心率,属于简单题目.
6、A
【答案解析】
求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.
【题目详解】
抛物线的准线为, 双曲线的两条渐近线为, 可得两交点为, 即有三角形的面积为,解得,故选A.
【答案点睛】
本题考查三角形的面积的求法,注意运用抛物线的准线方程和双曲线的渐近线方程,考查运算能力,属于基础题.
7、C
【答案解析】
几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.
【题目详解】
几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.
故选:.
【答案点睛】
本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.
8、A
【答案解析】
设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.
【题目详解】
如图,设直线直线与轴正半轴所成的最小正角为
因为点在角的终边上,所以
依题有,则,
所以,
故选:A
【答案点睛】
本题考查三角函数的定义及诱导公式,属于基础题.
9、C
【答案解析】
由题意可得双曲线的渐近线的方程为.
∵为线段的中点,
∴,则为等腰三角形.
∴
由双曲线的的渐近线的性质可得
∴
∴,即.
∴双曲线的离心率为
故选C.
点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:①求出 ,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).
10、C
【答案解析】
画出图形,将三角形面积比转为线段长度比,进而转为坐标的表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.
【题目详解】
作图,设与的夹角为,则中边上的高与中边上的高之比为,,设,则直线,即,与联立,解得,从而得到面积比为.
故选:
【答案点睛】
解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.
11、C
【答案解析】
需结合抛物线第一定义和图形,得为等腰三角形,设准线与轴的交点为,过点作,再由三角函数定义和几何关系分别表示转化出,
,结合比值与正切二倍角公式化简即可
【题目详解】
如图,设准线与轴的交点为,过点作.由抛物线定义知,
所以,,,,
所以.
故选:C
【答案点睛】
本题考查抛物线的几何性质,三角函数的性质,数形结合思想,转化与化归思想,属于中档题
12、C
【答案解析】
根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.
【题目详解】
由题意,,
第1次循环,,满足判断条件;
第2次循环,,满足判断条件;
第3次循环,,满足判断条件;
可得的值满足以3项为周期的计算规律,
所以当时,跳出循环,此时和时的值对应的相同,即.
故选:C.
【答案点睛】
本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、1
【答案解析】
先求f(1),再根据f(1)值所在区间求f(f(1)).
【题目详解】
由题意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案为:1.
【答案点睛】
本题考查分段函数求值,考查对应性以及基本求解能力.
14、
【答案解析】
求导,得到和,利用点斜式即可求得结果.
【题目详解】
由于,,所以,
由点斜式可得切线方程为.
故答案为:.
【答案点睛】
本题考查利用导数的几何意义求切线方程,属基础题.
15、②③
【答案解析】
由频率分布直方图可知,解得,故①不正确;这名学生中数学成绩在分以下的人数为,故②正确;设这名学生数学成绩的中位数为,则,解得,故③正确;④这名学生数学成绩的平均数为
,故④不正确.综上,说法正确的序号是②③.
16、
【答案解析】
建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.
【题目详解】
以A为坐标原点,AD为x轴建立如图所示的直角坐标系,设,则
,
所以,,由,
得,即,又,所以
,故,,