温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖南省
教育
探索
协作
体高三
最后
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,其中是虚数单位,则对应的点的坐标为( )
A. B. C. D.
2.已知函数是上的偶函数,是的奇函数,且,则的值为( )
A. B. C. D.
3.记递增数列的前项和为.若,,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则( )
A. B.
C. D.
4.某设备使用年限x(年)与所支出的维修费用y(万元)的统计数据分别为,,,,由最小二乘法得到回归直线方程为,若计划维修费用超过15万元将该设备报废,则该设备的使用年限为( )
A.8年 B.9年 C.10年 D.11年
5.二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )
A.180 B.90 C.45 D.360
6.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则( )
A.命题①和命题②都成立 B.命题①和命题②都不成立
C.命题①成立,命题②不成立 D.命题①不成立,命题②成立
7.若的展开式中含有常数项,且的最小值为,则( )
A. B. C. D.
8.下列命题是真命题的是( )
A.若平面,,,满足,,则;
B.命题:,,则:,;
C.“命题为真”是“命题为真”的充分不必要条件;
D.命题“若,则”的逆否命题为:“若,则”.
9.一个几何体的三视图如图所示,则该几何体的体积为( )
A. B.
C. D.
10.一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( )
A.
B.
C.
D.
11.已知集合,则集合的非空子集个数是( )
A.2 B.3 C.7 D.8
12.已知定义在上的函数在区间上单调递增,且的图象关于对称,若实数满足,则的取值范围是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.根据如图所示的伪代码,若输出的的值为,则输入的的值为_______.
14.在直角三角形中,为直角,,点在线段上,且,若,则的正切值为_____.
15.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.
16.在中,,.若,则 _________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知直线与抛物线交于两点.
(1)当点的横坐标之和为4时,求直线的斜率;
(2)已知点,直线过点,记直线的斜率分别为,当取最大值时,求直线的方程.
18.(12分)某单位准备购买三台设备,型号分别为已知这三台设备均使用同一种易耗品,提供设备的商家规定:可以在购买设备的同时购买该易耗品,每件易耗品的价格为100元,也可以在设备使用过程中,随时单独购买易耗品,每件易耗品的价格为200元.为了决策在购买设备时应购买的易耗品的件数.该单位调查了这三种型号的设备各60台,调査每台设备在一个月中使用的易耗品的件数,并得到统计表如下所示.
每台设备一个月中使用的易耗品的件数
6
7
8
型号A
30
30
0
频数
型号B
20
30
10
型号C
0
45
15
将调查的每种型号的设备的频率视为概率,各台设备在易耗品的使用上相互独立.
(1)求该单位一个月中三台设备使用的易耗品总数超过21件的概率;
(2)以该单位一个月购买易耗品所需总费用的期望值为决策依据,该单位在购买设备时应同时购买20件还是21件易耗品?
19.(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;
记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,…).
记数表中位于第i行第j列的元素为,其中(,,).如:,.
(1)设,,请计算,,;
(2)设,,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;
(3)设,,对于整数t,t不属于数表M,求t的最大值.
20.(12分)已知抛物线Γ:y2=2px(p>0)的焦点为F,P是抛物线Γ上一点,且在第一象限,满足(2,2)
(1)求抛物线Γ的方程;
(2)已知经过点A(3,﹣2)的直线交抛物线Γ于M,N两点,经过定点B(3,﹣6)和M的直线与抛物线Γ交于另一点L,问直线NL是否恒过定点,如果过定点,求出该定点,否则说明理由.
21.(12分)设函数.
(1)当时,解不等式;
(2)设,且当时,不等式有解,求实数的取值范围.
22.(10分)已知首项为2的数列满足.
(1)证明:数列是等差数列.
(2)令,求数列的前项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
利用复数相等的条件求得,,则答案可求.
【题目详解】
由,得,.
对应的点的坐标为,,.
故选:.
【答案点睛】
本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.
2、B
【答案解析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.
【题目详解】
为上的奇函数,
,
而函数是上的偶函数,,
,
故为周期函数,且周期为
故选:B
【答案点睛】
本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.
3、D
【答案解析】
由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围.
【题目详解】
解:,或其积,或其商仍是该数列中的项,
或者或者是该数列中的项,
又数列是递增数列,
,
,,只有是该数列中的项,
同理可以得到,,,也是该数列中的项,且有,
,或(舍,,
根据,,,
同理易得,,,,,,
,
故选:D.
【答案点睛】
本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题.
4、D
【答案解析】
根据样本中心点在回归直线上,求出,求解,即可求出答案.
【题目详解】
依题意在回归直线上,
,
由,
估计第年维修费用超过15万元.
故选:D.
【答案点睛】
本题考查回归直线过样本中心点、以及回归方程的应用,属于基础题.
5、A
【答案解析】
试题分析:因为的展开式中只有第六项的二项式系数最大,所以,,令,则,.
考点:1.二项式定理;2.组合数的计算.
6、A
【答案解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.
【题目详解】
①如图所示,过作平面,垂足为,连接,作,连接.
由图可知,,所以,所以①正确.
②由于,所以与所成角,所以,所以②正确.
综上所述,①②都正确.
故选:A
【答案点睛】
本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.
7、C
【答案解析】
展开式的通项为
,因为展开式中含有常数项,所以,即为整数,故n的最小值为1.
所以.故选C
点睛:求二项展开式有关问题的常见类型及解题策略
(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.
(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.
8、D
【答案解析】
根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.
【题目详解】
若平面,,,满足,,则可能相交,故A错误;
命题“:,”的否定为:,,故B错误;
为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;
命题“若,则”的逆否命题为:“若,则”,故D正确;
故选D
【答案点睛】
本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.
9、A
【答案解析】
根据题意,可得几何体,利用体积计算即可.
【题目详解】
由题意,该几何体如图所示:
该几何体的体积.
故选:A.
【答案点睛】
本题考查了常见几何体的三视图和体积计算,属于基础题.
10、D
【答案解析】
由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D.
11、C
【答案解析】
先确定集合中元素,可得非空子集个数.
【题目详解】
由题意,共3个元素,其子集个数为,非空子集有7个.
故选:C.
【答案点睛】
本题考查集合的概念,考查子集的概念,含有个元素的集合其子集个数为,非空子集有个.
12、C
【答案解析】
根据题意,由函数的图象变换分析可得函数为偶函数,又由函数在区间上单调递增,分析可得,解可得的取值范围,即可得答案.
【题目详解】
将函数的图象向左平移个单位长度可得函数的图象,
由于函数的图象关于直线对称,则函数的图象关于轴对称,
即函数为偶函数,由,得,
函数在区间上单调递增,则,得,解得.
因此,实数的取值范围是.
故选:C.
【答案点睛】
本题考查利用函数的单调性与奇偶性解不等式,注意分析函数的奇偶性,属于中等题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
算法的功能是求的值,根据输出的值,分别求出当时和当时的值即可得解.
【题目详解】
解:由程序语句知:算法的功能是求的值,
当时,,可得:,或(舍去);
当时,,可得:(舍去).
综上的值为:.
故答案为:.
【答案点睛】
本题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题.
14、3
【答案解析】
在直角三角形中设,,,利用两角差的正切公式求解.
【题目详解】
设,,
则
,
故.
故答案为:3
【答案点睛】
此题考查在直角三角形中求角的正切值,关键在于合理构造角的和差关系,其本质是利用两角差的正切公式求解.
15、
【答案解析】
把 绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.
【题目详解】
将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,
故答案为:
【答案点睛】
本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.
16、
【答案解析】
分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.
详解:根据题意,设,则,根据,
得,由勾股定理可得,
根据余弦定理可得,
化简整理得,即,解得,
所以,故答案是.
点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁