温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖南省
衡阳市
第一
中学
高三二诊
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设,且,则( )
A. B. C. D.
2.若与互为共轭复数,则( )
A.0 B.3 C.-1 D.4
3.等差数列的前项和为,若,,则数列的公差为( )
A.-2 B.2 C.4 D.7
4.已知,如图是求的近似值的一个程序框图,则图中空白框中应填入
A. B.
C. D.
5.已知平面向量,,,则实数x的值等于( )
A.6 B.1 C. D.
6.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:
①直线与直线的斜率乘积为;
②轴;
③以为直径的圆与抛物线准线相切.
其中,所有正确判断的序号是( )
A.①②③ B.①② C.①③ D.②③
7.设为定义在上的奇函数,当时,(为常数),则不等式的解集为( )
A. B. C. D.
8.根据最小二乘法由一组样本点(其中),求得的回归方程是,则下列说法正确的是( )
A.至少有一个样本点落在回归直线上
B.若所有样本点都在回归直线上,则变量同的相关系数为1
C.对所有的解释变量(),的值一定与有误差
D.若回归直线的斜率,则变量x与y正相关
9.在复平面内,复数(为虚数单位)的共轭复数对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.在复平面内,复数对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为( )
A. B. C. D.
12.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X的期望为( )
A. B. C.1 D.2
二、填空题:本题共4小题,每小题5分,共20分。
13.已知一组数据,1,0,,的方差为10,则________
14.设函数,当时,记最大值为,则的最小值为______.
15.若函数的图像与直线的三个相邻交点的横坐标分别是,,,则实数的值为________.
16.若正三棱柱的所有棱长均为2,点为侧棱上任意一点,则四棱锥的体积为__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图所示,已知平面,,为等边三角形,为边上的中点,且.
(Ⅰ)求证:面;
(Ⅱ)求证:平面平面;
(Ⅲ)求该几何体的体积.
18.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.
(1)求椭圆的标准方程;
(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.
19.(12分)已知直线的参数方程为(,为参数),曲线的极坐标方程为.
(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;
(2)若直线经过点,求直线被曲线截得的线段的长.
20.(12分)已知在中,内角所对的边分别为,若,,且.
(1)求的值;
(2)求的面积.
21.(12分)已知抛物线:的焦点为,过上一点()作两条倾斜角互补的直线分别与交于,两点,
(1)证明:直线的斜率是-1;
(2)若,,成等比数列,求直线的方程.
22.(10分)如图,四棱锥中,平面,,,.
(I)证明:;
(Ⅱ)若是中点,与平面所成的角的正弦值为,求的长.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
将等式变形后,利用二次根式的性质判断出,即可求出的范围.
【题目详解】
即
故选:C
【答案点睛】
此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.
2、C
【答案解析】
计算,由共轭复数的概念解得即可.
【题目详解】
,又由共轭复数概念得:,
.
故选:C
【答案点睛】
本题主要考查了复数的运算,共轭复数的概念.
3、B
【答案解析】
在等差数列中由等差数列公式与下标和的性质求得,再由等差数列通项公式求得公差.
【题目详解】
在等差数列的前项和为,则
则
故选:B
【答案点睛】
本题考查等差数列中求由已知关系求公差,属于基础题.
4、C
【答案解析】
由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,①若图中空白框中填入,则,②若图中空白框中填入,则,此时不成立,;执行第二次循环:由①②均可得,③若图中空白框中填入,则,④若图中空白框中填入,则,此时不成立,;执行第三次循环:由③可得,符合题意,由④可得,不符合题意,所以图中空白框中应填入,故选C.
5、A
【答案解析】
根据向量平行的坐标表示即可求解.
【题目详解】
,,,
,
即,
故选:A
【答案点睛】
本题主要考查了向量平行的坐标运算,属于容易题.
6、B
【答案解析】
由题意,可设直线的方程为,利用韦达定理判断第一个结论;将代入抛物线的方程可得,,从而,,进而判断第二个结论;设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,进而判断第三个结论.
【题目详解】
解:由题意,可设直线的方程为,
代入抛物线的方程,有.
设点,的坐标分别为,,
则,.
所.
则直线与直线的斜率乘积为.所以①正确.
将代入抛物线的方程可得,,从而,,
根据抛物线的对称性可知,,两点关于轴对称,
所以直线轴.所以②正确.
如图,设为抛物线的焦点,以线段为直径的圆为,
则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,
则.所以③不正确.
故选:B.
【答案点睛】
本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.
7、D
【答案解析】
由可得,所以,由为定义在上的奇函数结合增函数+增函数=增函数,可知在上单调递增,注意到,再利用函数单调性即可解决.
【题目详解】
因为在上是奇函数.所以,解得,所以当时,
,且时,单调递增,所以
在上单调递增,因为,
故有,解得.
故选:D.
【答案点睛】
本题考查利用函数的奇偶性、单调性解不等式,考查学生对函数性质的灵活运用能力,是一道中档题.
8、D
【答案解析】
对每一个选项逐一分析判断得解.
【题目详解】
回归直线必过样本数据中心点,但样本点可能全部不在回归直线上﹐故A错误;
所有样本点都在回归直线上,则变量间的相关系数为,故B错误;
若所有的样本点都在回归直线上,则的值与相等,故C错误;
相关系数r与符号相同,若回归直线的斜率,则,样本点分布应从左到右是上升的,则变量x与y正相关,故D正确.
故选D.
【答案点睛】
本题主要考查线性回归方程的性质,意在考查学生对该知识的理解掌握水平和分析推理能力.
9、D
【答案解析】
将复数化简得,,即可得到对应的点为,即可得出结果.
【题目详解】
,对应的点位于第四象限.
故选:.
【答案点睛】
本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.
10、B
【答案解析】
化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.
【题目详解】
对应的点的坐标为在第二象限
故选:B.
【答案点睛】
本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.
11、A
【答案解析】
先通过降幂公式和辅助角法将函数转化为,再求最值.
【题目详解】
已知函数f(x)=sin2x+sin2(x),
=,
=,
因为,
所以f(x)的最小值为.
故选:A
【答案点睛】
本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.
12、C
【答案解析】
每一次成功的概率为,服从二项分布,计算得到答案.
【题目详解】
每一次成功的概率为,服从二项分布,故.
故选:.
【答案点睛】
本题考查了二项分布求数学期望,意在考查学生的计算能力和应用能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、7或
【答案解析】
依据方差公式列出方程,解出即可.
【题目详解】
,1,0,,的平均数为,
所以
解得或.
【答案点睛】
本题主要考查方差公式的应用.
14、
【答案解析】
易知,设,,利用绝对值不等式的性质即可得解.
【题目详解】
,
设,,
令,
当时,,所以单调递减
令,
当时,,所以单调递增
所以当时,
,
,
则
则,
即
故答案为:.
【答案点睛】
本题考查函数最值的求法,考查绝对值不等式的性质,考查转化思想及逻辑推理能力,属于难题.
15、4
【答案解析】
由题可分析函数与的三个相邻交点中不相邻的两个交点距离为,即,进而求解即可
【题目详解】
由题意得函数的最小正周期,解得
故答案为:4
【答案点睛】
本题考查正弦型函数周期的应用,考查求正弦型函数中的
16、
【答案解析】
依题意得,再求点到平面的距离为点到直线的距离,用公式
所以即可得出答案.
【题目详解】
解: 正三棱柱的所有棱长均为2,
则,
点到平面的距离为点到直线的距离
所以,
所以.
故答案为:
【答案点睛】
本题考查椎体的体积公式,考查运算能力,是基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(Ⅰ)见解析; (Ⅱ)见解析; (Ⅲ).
【答案解析】
(I)取的中点,连接,通过证明四边形为平行四边形,证得,由此证得平面.(II)利用,证得平面,从而得到平面,由此证得平面平面.(III)作交于点,易得面,利用棱锥的体积公式,计算出棱锥的体积.
【题目详解】
(Ⅰ)取的中点,连接,则,,
故四边形为平行四边形.
故.
又面,平面,所以面.
(Ⅱ)为等边三角形,为中点,所以.又,
所以面.
又,故面,所以面平面.
(Ⅲ)几何体是四棱锥,作交于点,即面,
.
【答案点睛】
本小题主要考查线面平行的证明,考查面面垂直的证明,考查四棱锥体积的求法,考查空间想象能力,所以中档题.
18、(1);(2)详见解析.
【答案解析】
试题分析:(1)利用题中条件先得出的值,然后利用条件,结合椭圆的对称性得到点的坐标,然后将点的坐标代入椭圆方程求出的值,从而确定椭圆的方程;(2)将条件
得到直线与的斜率直线的关系(互为相反数),然后设直线的方程为,将此直线的方程与椭圆方程联立,求出点的坐标,注意到直线与的斜率之间的关系得到点的坐标,最后再用斜率公式证明直线的斜率为定值.
(1),,
又是等腰三角形,所以,
把点代入椭圆方程,求得,
所以椭圆方程为;
(2)由题易得直线、斜率均存在,
又,所以,
设直线代入椭圆方程,
化简得,
其一解为,另一解为,