分享
2023学年湖南省怀化市(怀化市第三中学高三下学期第六次检测数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 湖南省 怀化市 第三中学 下学 第六 检测 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为( ) A. B.6 C. D. 2.已知为抛物线的焦点,点在抛物线上,且,过点的动直线与抛物线交于两点,为坐标原点,抛物线的准线与轴的交点为.给出下列四个命题: ①在抛物线上满足条件的点仅有一个; ②若是抛物线准线上一动点,则的最小值为; ③无论过点的直线在什么位置,总有; ④若点在抛物线准线上的射影为,则三点在同一条直线上. 其中所有正确命题的个数为( ) A.1 B.2 C.3 D.4 3.已知,则下列说法中正确的是( ) A.是假命题 B.是真命题 C.是真命题 D.是假命题 4.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于( ) A. B. C. D. 5.函数的大致图像为( ) A. B. C. D. 6.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是( ) A.随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长 B.年以来,国家财政性教育经费的支出占比例持续年保持在以上 C.从年至年,中国的总值最少增加万亿 D.从年到年,国家财政性教育经费的支出增长最多的年份是年 7.已知某超市2018年12个月的收入与支出数据的折线图如图所示: 根据该折线图可知,下列说法错误的是( ) A.该超市2018年的12个月中的7月份的收益最高 B.该超市2018年的12个月中的4月份的收益最低 C.该超市2018年1-6月份的总收益低于2018年7-12月份的总收益 D.该超市2018年7-12月份的总收益比2018年1-6月份的总收益增长了90万元 8.已知函数,若方程恰有两个不同实根,则正数m的取值范围为( ) A. B. C. D. 9.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是( ) A.乙的数据分析素养优于甲 B.乙的数学建模素养优于数学抽象素养 C.甲的六大素养整体水平优于乙 D.甲的六大素养中数据分析最差 10.点为的三条中线的交点,且,,则的值为( ) A. B. C. D. 11.设复数满足,则( ) A. B. C. D. 12.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( ) A.18种 B.36种 C.54种 D.72种 二、填空题:本题共4小题,每小题5分,共20分。 13.若复数z满足,其中i是虚数单位,则z的模是______. 14.设集合,(其中e是自然对数的底数),且,则满足条件的实数a的个数为______. 15.若,则______. 16.已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,,则球的体积为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知与有两个不同的交点,其横坐标分别为(). (1)求实数的取值范围; (2)求证:. 18.(12分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟) 将学生日均体育锻炼时间在的学生评价为“锻炼达标”. (1)请根据上述表格中的统计数据填写下面列联表: 并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关? (2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出人,进行体育锻炼体会交流. (i)求这人中,男生、女生各有多少人? (ii)从参加体会交流的人中,随机选出人发言,记这人中女生的人数为,求的分布列和数学期望. 参考公式:,其中. 临界值表: 0.10 0.05 0.025 0.010 0 2.706 3.841 5.024 6.635 19.(12分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点. (1)求椭圆的标准方程; (2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值. 20.(12分)已知公差不为零的等差数列的前n项和为,,是与的等比中项. (1)求; (2)设数列满足,,求数列的通项公式. 21.(12分)已知函数是减函数. (1)试确定a的值; (2)已知数列,求证:. 22.(10分)如图,正方体的棱长为2,为棱的中点. (1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由); (2)求与该平面所成角的正弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解. 【题目详解】 如图,该几何体为正方体去掉三棱锥, 所以该几何体的体积为:, 故选:D 【答案点睛】 本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题. 2、C 【答案解析】 ①:由抛物线的定义可知,从而可求 的坐标;②:做关于准线的对称点为,通过分析可知当三点共线时取最小值,由两点间的距离公式,可求此时最小值;③:设出直线方程,联立直线与抛物线方程,结合韦达定理,可知焦点坐标的关系,进而可求,从而可判断出的关系;④:计算直线 的斜率之差,可得两直线斜率相等,进而可判断三点在同一条直线上. 【题目详解】 解:对于①,设,由抛物线的方程得,则, 故, 所以或,所以满足条件的点有二个,故①不正确; 对于②,不妨设,则关于准线的对称点为, 故, 当且仅当三点共线时等号成立,故②正确; 对于③,由题意知, ,且的斜率不为0,则设方程为:, 设与抛物线的交点坐标为,联立直线与抛物线的方程为, ,整理得,则,所以 , 则 .故的倾斜角互补,所以,故③正确. 对于④,由题意知 ,由③知, 则 ,由, 知,即三点在同一条直线上,故④正确. 故选:C. 【答案点睛】 本题考查了抛物线的定义,考查了直线与抛物线的位置关系,考查了抛物线的性质,考查了直线方程,考查了两点的斜率公式.本题的难点在于第二个命题,结合初中的“饮马问题”分析出何时取最小值. 3、D 【答案解析】 举例判断命题p与q的真假,再由复合命题的真假判断得答案. 【题目详解】 当时,故命题为假命题; 记f(x)=ex﹣x的导数为f′(x)=ex, 易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增, ∴f(x)>f(0)=1>0,即,故命题为真命题; ∴是假命题 故选D 【答案点睛】 本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题. 4、A 【答案解析】 由已知,设.可得.于是可得,进而得出结论. 【题目详解】 解:依题意,设. 则. ,. 设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为. 则, . 故选:A. 【答案点睛】 本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题. 5、D 【答案解析】 通过取特殊值逐项排除即可得到正确结果. 【题目详解】 函数的定义域为,当时,,排除B和C; 当时,,排除A. 故选:D. 【答案点睛】 本题考查图象的判断,取特殊值排除选项是基本手段,属中档题. 6、C 【答案解析】 观察图表,判断四个选项是否正确. 【题目详解】 由表易知、、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误. 【答案点睛】 本题考查统计图表,正确认识图表是解题基础. 7、D 【答案解析】 用收入减去支出,求得每月收益,然后对选项逐一分析,由此判断出说法错误的选项. 【题目详解】 用收入减去支出,求得每月收益(万元),如下表所示: 月份 1 2 3 4 5 6 7 8 9 10 11 12 收益 20 30 20 10 30 30 60 40 30 30 50 30 所以月收益最高,A选项说法正确;月收益最低,B选项说法正确;月总收益万元,月总收益万元,所以前个月收益低于后六个月收益,C选项说法正确,后个月收益比前个月收益增长万元,所以D选项说法错误.故选D. 【答案点睛】 本小题主要考查图表分析,考查收益的计算方法,属于基础题. 8、D 【答案解析】 当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案. 【题目详解】 当时,,故函数周期为,画出函数图像,如图所示: 方程,即,即函数和有两个交点. ,,故,,,,. 根据图像知:. 故选:. 【答案点睛】 本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键. 9、C 【答案解析】 根据题目所给图像,填写好表格,由表格数据选出正确选项. 【题目详解】 根据雷达图得到如下数据: 数学抽象 逻辑推理 数学建模 直观想象 数学运算 数据分析 甲 4 5 4 5 4 5 乙 3 4 3 3 5 4 由数据可知选C. 【答案点睛】 本题考查统计问题,考查数据处理能力和应用意识. 10、B 【答案解析】 可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出. 【题目详解】 如图: 点为的三条中线的交点 , 由可得:, 又因,, . 故选:B 【答案点睛】 本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题. 11、D 【答案解析】 根据复数运算,即可容易求得结果. 【题目详解】 . 故选:D. 【答案点睛】 本题考查复数的四则运算,属基础题. 12、B 【答案解析】 把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得. 【题目详解】 把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇, 则不同的分配方案有种. 故选:. 【答案点睛】 本题考查排列组合,属于基础题.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开