温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖北省
黄冈市
黄石市
八市高三
考前
热身
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知△ABC中,.点P为BC边上的动点,则的最小值为( )
A.2 B. C. D.
2.集合,,则( )
A. B. C. D.
3.给出以下四个命题:
①依次首尾相接的四条线段必共面;
②过不在同一条直线上的三点,有且只有一个平面;
③空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角必相等;
④垂直于同一直线的两条直线必平行.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
4.设集合,,则集合
A. B. C. D.
5.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍.其中记载有求“囷盖”的术:“置如其周,令相承也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长与高,计算其体积的近似公式.它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的圆周率近似取为( )
A. B. C. D.
6.已知为圆的一条直径,点的坐标满足不等式组则的取值范围为( )
A. B.
C. D.
7.已知集合.为自然数集,则下列表示不正确的是( )
A. B. C. D.
8.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=( )
A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)
9.已知集合,,若,则( )
A.4 B.-4 C.8 D.-8
10.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填( ).
A. B. C. D.
11.下列四个结论中正确的个数是
(1)对于命题使得,则都有;
(2)已知,则
(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;
(4)“”是“”的充分不必要条件.
A.1 B.2 C.3 D.4
12.设为虚数单位,为复数,若为实数,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为__________.
14.下图是一个算法流程图,则输出的的值为__________.
15.某公园划船收费标准如表:
某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能.
16.已知,为正实数,且,则的最小值为________________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)设函数其中
(Ⅰ)若曲线在点处切线的倾斜角为,求的值;
(Ⅱ)已知导函数在区间上存在零点,证明:当时,.
18.(12分)设函数.
(1)当时,求不等式的解集;
(2)若恒成立,求的取值范围.
19.(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修.工厂规定当日损坏的元件A在次日早上 8:30 之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作.每个工人独立维修A元件需要时间相同.维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:
日期
1 日
2 日
3 日
4 日
5 日
6 日
7 日
8 日
9 日
10 日
元件A个数
9
15
12
18
12
18
9
9
24
12
日期
11 日
12 日
13 日
14 日
15 日
16 日
17 日
18 日
19 日
20 日
元件A个数
12
24
15
15
15
12
15
15
15
24
从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数.
(Ⅰ)求X的分布列与数学期望;
(Ⅱ)若a,b,且b-a=6,求最大值;
(Ⅲ)目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)
20.(12分)已知函数
(1)若函数有且只有一个零点,求实数的取值范围;
(2)若函数对恒成立,求实数的取值范围.
21.(12分)已知.
(1)当时,求不等式的解集;
(2)若,,证明:.
22.(10分)在数列和等比数列中,,,.
(1)求数列及的通项公式;
(2)若,求数列的前n项和.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
以BC的中点为坐标原点,建立直角坐标系,可得,设,运用向量的坐标表示,求得点A的轨迹,进而得到关于a的二次函数,可得最小值.
【题目详解】
以BC的中点为坐标原点,建立如图的直角坐标系,
可得,设,
由,
可得,即,
则
,
当时,的最小值为.
故选D.
【答案点睛】
本题考查向量数量积的坐标表示,考查转化思想和二次函数的值域解法,考查运算能力,属于中档题.
2、A
【答案解析】
计算,再计算交集得到答案.
【题目详解】
,,故.
故选:.
【答案点睛】
本题考查了交集运算,属于简单题.
3、B
【答案解析】
用空间四边形对①进行判断;根据公理2对②进行判断;根据空间角的定义对③进行判断;根据空间直线位置关系对④进行判断.
【题目详解】
①中,空间四边形的四条线段不共面,故①错误.
②中,由公理2知道,过不在同一条直线上的三点,有且只有一个平面,故②正确.
③中,由空间角的定义知道,空间中如果一个角的两边与另一个角的两边分别平行,那么
这两个角相等或互补,故③错误.
④中,空间中,垂直于同一直线的两条直线可相交,可平行,可异面,故④错误.
故选:B
【答案点睛】
本小题考查空间点,线,面的位置关系及其相关公理,定理及其推论的理解和认识;考查空间想象能力,推理论证能力,考查数形结合思想,化归与转化思想.
4、B
【答案解析】
先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果.
【题目详解】
对于集合A,,解得或,故.对于集合B,,解得.故.故选B.
【答案点睛】
本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集.
5、C
【答案解析】
将圆锥的体积用两种方式表达,即,解出即可.
【题目详解】
设圆锥底面圆的半径为r,则,又,
故,所以,.
故选:C.
【答案点睛】
本题利用古代数学问题考查圆锥体积计算的实际应用,考查学生的运算求解能力、创新能力.
6、D
【答案解析】
首先将转化为,只需求出的取值范围即可,而表示可行域内的点与圆心距离,数形结合即可得到答案.
【题目详解】
作出可行域如图所示
设圆心为,则
,
过作直线的垂线,垂足为B,显然,又易得,
所以,,
故.
故选:D.
【答案点睛】
本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.
7、D
【答案解析】
集合.为自然数集,由此能求出结果.
【题目详解】
解:集合.为自然数集,
在A中,,正确;
在B中,,正确;
在C中,,正确;
在D中,不是的子集,故D错误.
故选:D.
【答案点睛】
本题考查命题真假的判断、元素与集合的关系、集合与集合的关系等基础知识,考查运算求解能力,是基础题.
8、C
【答案解析】
先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.
【题目详解】
因为N={x|x(x+3)≤0}={x|-3≤x≤0},
又因为M={x|﹣1<x<2},
所以M∩N={x|﹣1<x≤0}.
故选:C
【答案点睛】
本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.
9、B
【答案解析】
根据交集的定义,,可知,代入计算即可求出.
【题目详解】
由,可知,
又因为,
所以时,,
解得.
故选:B.
【答案点睛】
本题考查交集的概念,属于基础题.
10、C
【答案解析】
根据程序框图写出几次循环的结果,直到输出结果是8时.
【题目详解】
第一次循环:
第二次循环:
第三次循环:
第四次循环:
第五次循环:
第六次循环:
第七次循环:
第八次循环:
所以框图中①处填时,满足输出的值为8.
故选:C
【答案点睛】
此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.
11、C
【答案解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.
【题目详解】
由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;
(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以 是正确的;
(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;
(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.
【答案点睛】
本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
12、B
【答案解析】
可设,将化简,得到,由复数为实数,可得,解方程即可求解
【题目详解】
设,则.
由题意有,所以.
故选:B
【答案点睛】
本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
设,,,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.
【题目详解】
解:由已知,的三边长,,成等差数列,
设,,,
而,根据勾股定理有:,
解得:,
由椭圆定义知:的周长为,有,,
在直角中,由勾股定理,,即:,
∴离心率.
故答案为:.
【答案点睛】
本题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.
14、3
【答案解析】
分析程序中各变量、各语句的作用,根据流程图所示的顺序,即可得出结论.
【题目详解】
解:初始,
第一次循环: ;
第二次循环: ;
第三次循环