温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖北省
荆州
中学
第二次
诊断
检测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数的虚部为( )
A. B. C.2 D.
2.的展开式中有理项有( )
A.项 B.项 C.项 D.项
3.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )
A.1月至8月空气合格天数超过天的月份有个
B.第二季度与第一季度相比,空气达标天数的比重下降了
C.8月是空气质量最好的一个月
D.6月份的空气质量最差.
4.已知变量的几组取值如下表:
1
2
3
4
7
若与线性相关,且,则实数( )
A. B. C. D.
5.已知平面,,直线满足,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.即不充分也不必要条件
6.运行如图程序,则输出的S的值为( )
A.0 B.1 C.2018 D.2017
7.已知,,,则的大小关系为( )
A. B. C. D.
8.下列不等式成立的是( )
A. B. C. D.
9.执行程序框图,则输出的数值为( )
A. B. C. D.
10.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为( )
A. B. C. D.
11.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好; ③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“ ,”的充要条件;其中真命题的个数为( )
A.4 B.3 C.2 D.1
12.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知某几何体的三视图如图所示,则该几何体外接球的表面积是______.
14.设实数,若函数的最大值为,则实数的最大值为______.
15.函数在的零点个数为________.
16.已知变量 (m>0),且,若恒成立,则m的最大值________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知与有两个不同的交点,其横坐标分别为().
(1)求实数的取值范围;
(2)求证:.
18.(12分)中国古代数学经典《数书九章》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,,,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).
(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;
(2)求直线与平面所成角的正弦值.
19.(12分)如图,四边形中,,,,沿对角线将翻折成,使得.
(1)证明:;
(2)求直线与平面所成角的正弦值.
20.(12分)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的参数方程是(为参数,常数),曲线的极坐标方程是.
(1)写出的普通方程及的直角坐标方程,并指出是什么曲线;
(2)若直线与曲线,均相切且相切于同一点,求直线的极坐标方程.
21.(12分)已知数列和,前项和为,且,是各项均为正数的等比数列,且,.
(1)求数列和的通项公式;
(2)求数列的前项和.
22.(10分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线和直线的极坐标方程;
(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、D
【答案解析】
根据复数的除法运算,化简出,即可得出虚部.
【题目详解】
解:=,
故虚部为-2.
故选:D.
【答案点睛】
本题考查复数的除法运算和复数的概念.
2、B
【答案解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.
【题目详解】
,,
当,,,时,为有理项,共项.
故选:B.
【答案点睛】
本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.
3、D
【答案解析】
由图表可知月空气质量合格天气只有天,月份的空气质量最差.故本题答案选.
4、B
【答案解析】
求出,把坐标代入方程可求得.
【题目详解】
据题意,得,所以,所以.
故选:B.
【答案点睛】
本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.
5、A
【答案解析】
,是相交平面,直线平面,则“” “”,反之,直线满足,则或//或平面,即可判断出结论.
【题目详解】
解:已知直线平面,则“” “”,
反之,直线满足,则或//或平面,
“”是“”的充分不必要条件.
故选:A.
【答案点睛】
本题考查了线面和面面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力.
6、D
【答案解析】
依次运行程序框图给出的程序可得
第一次:,不满足条件;
第二次:,不满足条件;
第三次:,不满足条件;
第四次:,不满足条件;
第五次:,不满足条件;
第六次:,满足条件,退出循环.输出1.选D.
7、A
【答案解析】
根据指数函数与对数函数的单调性,借助特殊值即可比较大小.
【题目详解】
因为,
所以.
因为,
所以,
因为,为增函数,
所以
所以,
故选:A.
【答案点睛】
本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.
8、D
【答案解析】
根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.
【题目详解】
对于,,,错误;
对于,在上单调递减,,错误;
对于,,,,错误;
对于,在上单调递增,,正确.
故选:.
【答案点睛】
本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.
9、C
【答案解析】
由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.
【题目详解】
,,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,满足条件,
,,,,不满足条件,
输出.
故选:C
【答案点睛】
本题主要考查程序框图中的循环结构,属于简单题.
10、B
【答案解析】
由题可知,,再结合双曲线第一定义,可得,对有,
即,解得,再对,由勾股定理可得,化简即可求解
【题目详解】
如图,因为,所以.因为所以.
在中,,即,
得,则.在中,由得.
故选:B
【答案点睛】
本题考查双曲线的离心率求法,几何性质的应用,属于中档题
11、C
【答案解析】
①根据线性相关性与r的关系进行判断,
②根据相关指数的值的性质进行判断,
③根据方差关系进行判断,
④根据点满足回归直线方程,但点不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断.
【题目详解】
①若两个随机变量的线性相关性越强,则相关系数r的绝对值越接近于1,故①正确;
②用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好,故②错误;
③若统计数据的方差为1,则的方差为,故③正确;
④因为点满足回归直线方程,但点不一定就是这一组数据的中心点,即,不一定成立,而回归直线必过样本中心点,所以当,时,点 必满足线性回归方程 ;因此“满足线性回归方程”是“ ,”必要不充分条件.故 ④错误; 所以正确的命题有①③.
故选:C.
【答案点睛】
本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.
12、D
【答案解析】
设,利用余弦定理,结合双曲线的定义进行求解即可.
【题目详解】
设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:
,因此双曲线的渐近线方程为:
.
故选:D
【答案点睛】
本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
先由三视图在长方体中将其还原成直观图,再利用球的直径是长方体体对角线即可解决.
【题目详解】
由三视图知该几何体是一个三棱锥,如图所示
长方体对角线长为,所以三棱锥外接球半径为,故所求外接球的
表面积.
故答案为:.
【答案点睛】
本题考查几何体三视图以及几何体外接球的表面积,考查学生空间想象能力以及基本计算能力,是一道基础题.
14、
【答案解析】
根据,则当时,,即.当时,显然成立;当时,由,转化为,令,用导数法求其最大值即可.
【题目详解】
因为,又当时,,即.
当时,显然成立;
当时,由等价于,
令,,
当时,,单调递增,
当时,,单调递减,
,则,
又,得,
因此的最大值为.
故答案为:
【答案点睛】
本题主要考查导数在函数中的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.
15、
【答案解析】
求出的范围,再由函数值为零,得到的取值可得零点个数.
【题目详解】
详解:
由题可知,或
解得,或
故有3个零点.
【答案点睛】
本题主要考查三角函数的性质和函数的零点,属于基础题.
16、
【答案解析】
在不等式两边同时取对数,然后构造函数f(x)=,求函数的导数,研究函数的单调性即可得到结论.
【题目详解】
不等式两边同时取对数得,
即x2lnx1<x1lnx2,又
即成立,
设f(x)=,x∈(0,m),
∵x1<x2,f(x1)<f(x2),则函数f(x)在(0,m)上为增函数,
函数的导数,
由f′(x)>0得1﹣lnx>0得lnx<1,
得0<x<e,
即函数f(x)的最大增区间为(0,e),
则m的最大值为e
故答案为:e
【答案点睛】
本题考查函数单调性与导数之间的应用,根据条件利用取对数得到不等式,从而可构造新函数,是解决本题的关键
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)见解析
【答案解析】
(1)利用导数研究的单调性,分