温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖北省
安陆市
第一
中学
第四
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为( )
A. B. C. D.
2.若是定义域为的奇函数,且,则
A.的值域为 B.为周期函数,且6为其一个周期
C.的图像关于对称 D.函数的零点有无穷多个
3.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为( ).
A.432 B.576 C.696 D.960
4.已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为( )
A. B. C. D.
5.复数满足为虚数单位),则的虚部为( )
A. B. C. D.
6.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为( )
A. B. C. D.
7.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为( )
A. B.
C.() D.()
8.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为( ).
A. B. C.1 D.
9.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有( )
A.36种 B.44种 C.48种 D.54种
10.已知实数满足约束条件,则的最小值是
A. B. C.1 D.4
11.如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,,,,为茎叶图中的学生成绩,则输出的,分别是( )
A., B.,
C., D.,
12.复数的实部与虚部相等,其中为虚部单位,则实数( )
A.3 B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数有且只有一个零点,则实数的取值范围为__________.
14.将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为__________.
15.在各项均为正数的等比数列中,,且,成等差数列,则___________.
16.已知是等比数列,若,,且∥,则______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.
(1)证明:;
(2)求三棱锥的体积.
18.(12分)设函数,,.
(1)求函数的单调区间;
(2)若函数有两个零点,().
(i)求的取值范围;
(ii)求证:随着的增大而增大.
19.(12分)如图,已知在三棱台中,,,.
(1)求证:;
(2)过的平面分别交,于点,,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.
提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).
20.(12分)在中,角A,B,C的对边分别为a,b,c,且.
(1)求B;
(2)若的面积为,周长为8,求b.
21.(12分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.
22.(10分)某早餐店对一款新口味的酸奶进行了一段时间试销,定价为元/瓶.酸奶在试销售期间足量供应,每天的销售数据按照,,,分组,得到如下频率分布直方图,以不同销量的频率估计概率.
从试销售期间任选三天,求其中至少有一天的酸奶销量大于瓶的概率;
试销结束后,这款酸奶正式上市,厂家只提供整箱批发:大箱每箱瓶,批发成本元;小箱每箱瓶,批发成本元.由于酸奶保质期短,当天未卖出的只能作废.该早餐店以试销售期间的销量作为参考,决定每天仅批发一箱(计算时每个分组取中间值作为代表,比如销量为时看作销量为瓶).
①设早餐店批发一大箱时,当天这款酸奶的利润为随机变量,批发一小箱时,当天这款酸奶的利润为随机变量,求和的分布列和数学期望;
②以利润作为决策依据,该早餐店应每天批发一大箱还是一小箱?
注:销售额=销量×定价;利润=销售额-批发成本.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
根据程序框图列举出程序的每一步,即可得出输出结果.
【题目详解】
输入,不成立,是偶数成立,则,;
不成立,是偶数不成立,则,;
不成立,是偶数成立,则,;
不成立,是偶数成立,则,;
不成立,是偶数成立,则,;
不成立,是偶数成立,则,;
成立,跳出循环,输出i的值为.
故选:B.
【答案点睛】
本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.
2、D
【答案解析】
运用函数的奇偶性定义,周期性定义,根据表达式判断即可.
【题目详解】
是定义域为的奇函数,则,,
又,,
即是以4为周期的函数,,
所以函数的零点有无穷多个;
因为,,令,则,
即,所以的图象关于对称,
由题意无法求出的值域,
所以本题答案为D.
【答案点睛】
本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键.
3、B
【答案解析】
先把没有要求的3人排好,再分如下两种情况讨论:1.甲、丁两者一起,与乙、丙都不相邻,2.甲、丁一起与乙、丙二者之一相邻.
【题目详解】
首先将除甲、乙、丙、丁外的其余3人排好,共有种不同排列方式,甲、丁排在一起共有种不同方式;
若甲、丁一起与乙、丙都不相邻,插入余下三人产生的空档中,共有种不同方式;
若甲、丁一起与乙、丙二者之一相邻,插入余下三人产生的空档中,共有种不同方式;
根据分类加法、分步乘法原理,得满足要求的排队方法数为种.
故选:B.
【答案点睛】
本题考查排列组合的综合应用,在分类时,要注意不重不漏的原则,本题是一道中档题.
4、B
【答案解析】
由抛物线的定义转化,列出方程求出p,即可得到抛物线方程.
【题目详解】
由抛物线y2=2px(p>0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,,所以抛物线的标准方程为:y2=2x.
故选B.
【答案点睛】
本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题.
5、C
【答案解析】
,分子分母同乘以分母的共轭复数即可.
【题目详解】
由已知,,故的虚部为.
故选:C.
【答案点睛】
本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.
6、B
【答案解析】
根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.
【题目详解】
∵双曲线与的渐近线相同,且焦点在轴上,
∴可设双曲线的方程为,一个焦点为,
∴,∴,故的标准方程为.
故选:B
【答案点睛】
此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.
7、B
【答案解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.
【题目详解】
如图所示:连接,根据垂直平分线知,
故,故轨迹为双曲线,
,,,故,故轨迹方程为.
故选:.
【答案点睛】
本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.
8、B
【答案解析】
首先由三视图还原几何体,进一步求出几何体的棱长.
【题目详解】
解:根据三视图还原几何体如图所示,
所以,该四棱锥体的最长的棱长为.
故选:B.
【答案点睛】
本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.
9、B
【答案解析】
分三种情况,任务A排在第一位时,E排在第二位;任务A排在第二位时,E排在第三位;任务A排在第三位时,E排在第四位,结合任务B和C不能相邻,分别求出三种情况的排列方法,即可得到答案.
【题目详解】
六项不同的任务分别为A、B、C、D、E、F,
如果任务A排在第一位时,E排在第二位,剩下四个位置,先排好D、F,再在D、F之间的3个空位中插入B、C,此时共有排列方法:;
如果任务A排在第二位时,E排在第三位,则B,C可能分别在A、E的两侧,排列方法有,可能都在A、E的右侧,排列方法有;
如果任务A排在第三位时,E排在第四位,则B,C分别在A、E的两侧;
所以不同的执行方案共有种.
【答案点睛】
本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题.
10、B
【答案解析】
作出该不等式组表示的平面区域,如下图中阴影部分所示,
设,则,易知当直线经过点时,z取得最小值,
由,解得,所以,所以,故选B.
11、B
【答案解析】
试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,.
考点:程序框图、茎叶图.
12、B
【答案解析】
利用乘法运算化简复数即可得到答案.
【题目详解】
由已知,,所以,解得.
故选:B
【答案点睛】
本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
当时,转化条件得有唯一实数根,令,通过求导得到的单调性后数形结合即可得解.
【题目详解】
当时,,故不是函数的零点;
当时,即,
令,,
,
当时,;当时,,
的单调减区间为,增区间为,
又 ,可作出的草图,如图:
则要使有唯一实数根,则.
故答案为:.
【答案点睛】
本题考查了导数的应用,考查了转化化归思想和数形结合思想,属于难题.
14、
【答案解析】
先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解.
【题目详解】
6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,
甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,
所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.
故答案为:
【答案点睛】
本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.
15、
【答案解析】
利用等差中项的性质和等比数列通项公式得到关于的方程,解方程求出代入等比数列通项公式即可.
【题目详解】
因为,成等差数列,
所以,
由等比数列通项公式得,
,
所以,
解得或,
因为,所以,
所以等比数列的通项公式为
.
故答案为:
【答案点睛】
本题考查等差中项的性质和等比数列通项公式;考查运算求解能力和知识 综合运用能力;熟练掌握等差中项和等比数列