温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
湖北省
十堰市
重点中学
最后
冲刺
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设点是椭圆上的一点,是椭圆的两个焦点,若,则( )
A. B. C. D.
2.已知集合,,则( )
A. B. C. D.
3.已知函数,则( )
A.2 B.3 C.4 D.5
4. “”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
5.设,,是非零向量.若,则( )
A. B. C. D.
6.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是( )
A. B. C. D.
7.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )
A. B. C. D.
8.函数y=sin2x的图象可能是
A. B.
C. D.
9.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=( )
A. B. C. D.
10.若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )
A. B. C. D.
11.设函数,若在上有且仅有5个零点,则的取值范围为( )
A. B. C. D.
12.设为抛物线的焦点,,,为抛物线上三点,若,则( ).
A.9 B.6 C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.
14.曲线f(x)=(x2 +x)lnx在点(1,f(1))处的切线方程为____.
15.展开式中,含项的系数为______.
16.若函数(a>0且a≠1)在定义域[m,n]上的值域是[m2,n2](1<m<n),则a的取值范围是_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知在中,角,,的对边分别为,,,的面积为.
(1)求证:;
(2)若,求的值.
18.(12分)已知函数,.
(1)若不等式对恒成立,求的最小值;
(2)证明:.
(3)设方程的实根为.令若存在,,,使得,证明:.
19.(12分)新型冠状病毒肺炎疫情发生以来,电子购物平台成为人们的热门选择.为提高市场销售业绩,某公司设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采用促销”和“没有采用促销”的营销网点各选取了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.
(1)请你根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采用促销活动有关”;
采用促销
没有采用促销
合计
精英店
非精英店
合计
50
50
100
(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价 (单位:元)和日销量 (单位:件) 的一组数据后决定选择 作为回归模型进行拟合.具体数据如下表,表中的 :
①根据上表数据计算的值;
②已知该公司成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.
附①:
附②:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.
20.(12分)如图,四棱锥中,四边形是矩形,,为正三角形,且平面平面,、分别为、的中点.
(1)证明:平面平面;
(2)求二面角的余弦值.
21.(12分)已知函数和的图象关于原点对称,且.
(1)解关于的不等式;
(2)如果对,不等式恒成立,求实数的取值范围.
22.(10分)设椭圆的左右焦点分别为,离心率,右准线为,是上的两个动点,.
(Ⅰ)若,求的值;
(Ⅱ)证明:当取最小值时,与共线.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、B
【答案解析】
∵
∵
∴
∵,
∴
∴
故选B
点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.
2、B
【答案解析】
求出集合,利用集合的基本运算即可得到结论.
【题目详解】
由,得,则集合,
所以,.
故选:B.
【答案点睛】
本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.
3、A
【答案解析】
根据分段函数直接计算得到答案.
【题目详解】
因为所以.
故选:.
【答案点睛】
本题考查了分段函数计算,意在考查学生的计算能力.
4、B
【答案解析】
或,从而明确充分性与必要性.
【题目详解】
,
由可得:或,
即能推出,
但推不出
∴“”是“”的必要不充分条件
故选
【答案点睛】
本题考查充分性与必要性,简单三角方程的解法,属于基础题.
5、D
【答案解析】
试题分析:由题意得:若,则;若,则由可知,,故也成立,故选D.
考点:平面向量数量积.
【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.
6、D
【答案解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.
【题目详解】
3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.
故选:D.
【答案点睛】
本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.
7、C
【答案解析】
令圆的半径为1,则,故选C.
8、D
【答案解析】
分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.
详解:令,
因为,所以为奇函数,排除选项A,B;
因为时,,所以排除选项C,选D.
点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.
9、C
【答案解析】
设,则,,,设,根据化简得到,得到答案.
【题目详解】
设,则,,,则,设,
则,两式相减得到:,
,,即,,
,故,即,故,故.
故选:.
【答案点睛】
本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.
10、D
【答案解析】
求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.
【题目详解】
由题意,直线的斜率为,
可得直线的方程为,
把直线的方程代入双曲线,可得,
设,则,
由的中点为,可得,解答,
又由,即,解得,
所以双曲线的标准方程为.
故选:D.
【答案点睛】
本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.
11、A
【答案解析】
由求出范围,结合正弦函数的图象零点特征,建立不等量关系,即可求解.
【题目详解】
当时,,
∵在上有且仅有5个零点,
∴,∴.
故选:A.
【答案点睛】
本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题.
12、C
【答案解析】
设,,,由可得,利用定义将用表示即可.
【题目详解】
设,,,由及,
得,故,
所以.
故选:C.
【答案点睛】
本题考查利用抛物线定义求焦半径的问题,考查学生等价转化的能力,是一道容易题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
采用数形结合,计算以及,然后根据椭圆的定义可得,并使用余弦定理以及,可得结果.
【题目详解】
如图
由,所以
由,所以
又,则
所以
所以
化简可得:
则
故答案为:
【答案点睛】
本题考查椭圆的定义以及余弦定理的使用,关键在于根据角度求出线段的长度,考查分析能力以及计算能力,属中档题.
14、
【答案解析】
求函数的导数,利用导数的几何意义即可求出切线方程.
【题目详解】
解:∵,
∴,
则,
又,即切点坐标为(1,0),
则函数在点(1,f(1))处的切线方程为,
即,
故答案为:.
【答案点睛】
本题主要考查导数的几何意义,根据导数和切线斜率之间的关系是解决本题的关键.
15、2
【答案解析】
变换得到,展开式的通项为,计算得到答案.
【题目详解】
,的展开式的通项为:.
含项的系数为:.
故答案为:.
【答案点睛】
本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.
16、 (1,)
【答案解析】
在定义域[m,n]上的值域是[m2,n2],等价转化为与的图像在(1,)上恰有两个交点,考虑相切状态可求a的取值范围.
【题目详解】
由题意知:与的图像在(1,)上恰有两个交点
考查临界情形:与切于,
.
故答案为:.
【答案点睛】
本题主要考查导数的几何意义,把已知条件进行等价转化是求解的关键,侧重考查数学抽象的核心素养.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)证明见解析;(2).
【答案解析】
(1)利用,利用正弦定理,化简即可证明
(2)利用(1),得到当时,,
得出,得出,
然后可得
【题目详解】
证明:(1)据题意,得,
∴,
∴.
又∵,
∴,
∴.
解:(2)由(1)求解知,.
∴当时,.
又,
∴,
∴,
∴
.
【答案点睛】
本题考查正弦与余弦定理的应用,属于基础题
18、(1)(2)证明见解析(3)证明见解析
【答案解析】
(1)由题意可得,,令,利用导数得在上单调递减,进而可得结论;
(2)不等式转化为,令,,利用导数得单调性即可得到答案;
(3)由题意可得,进而可将不等式转化为,再利用单调性可得,记,,再利用导数研究单调性可得在上单调递增,即,即,即可得到结论.
【题目详解】