分享
2023学年浙江台州市书生中学高三第二次模拟考试数学试卷(含解析).doc
下载文档

ID:12699

大小:2.34MB

页数:21页

格式:DOC

时间:2023-01-06

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 浙江 台州市 书生 中学 第二次 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知无穷等比数列的公比为2,且,则( ) A. B. C. D. 2.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是( ) A. B. C. D. 3.已知的展开式中的常数项为8,则实数( ) A.2 B.-2 C.-3 D.3 4.已知向量,,设函数,则下列关于函数的性质的描述正确的是   A.关于直线对称 B.关于点对称 C.周期为 D.在上是增函数 5.设,则,则( ) A. B. C. D. 6.已知展开式的二项式系数和与展开式中常数项相等,则项系数为( ) A.10 B.32 C.40 D.80 7.已知,则下列关系正确的是( ) A. B. C. D. 8.若,则函数在区间内单调递增的概率是( ) A. B. C. D. 9.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=( ) A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2} 10.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为( ) A. B.2 C. D.1 11.已知变量的几组取值如下表: 1 2 3 4 7 若与线性相关,且,则实数( ) A. B. C. D. 12.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( ) (结果采取“只入不舍”的原则取整数,相关数据:,) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.直线(,)过圆:的圆心,则的最小值是______. 14.若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是________. 15.设、、、、是表面积为的球的球面上五点,四边形为正方形,则四棱锥体积的最大值为__________. 16.已知各项均为正数的等比数列的前项积为,,(且),则__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知椭圆:的离心率为,右焦点为抛物线的焦点. (1)求椭圆的标准方程; (2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值. 18.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4. (1)求椭圆C的标准方程; (2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程. 19.(12分)已知,函数,(是自然对数的底数). (Ⅰ)讨论函数极值点的个数; (Ⅱ)若,且命题“,”是假命题,求实数的取值范围. 20.(12分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点. (1)求的值及该圆的方程; (2)设为上任意一点,过点作的切线,切点为,证明:. 21.(12分)已知函数,,.函数的导函数在上存在零点. 求实数的取值范围; 若存在实数,当时,函数在时取得最大值,求正实数的最大值; 若直线与曲线和都相切,且在轴上的截距为,求实数的值. 22.(10分)已知函数,为的导数,函数在处取得最小值. (1)求证:; (2)若时,恒成立,求的取值范围. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、A 【答案解析】 依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。 【题目详解】 因为无穷等比数列的公比为2,则无穷等比数列的公比为。 由有,,解得,所以, ,故选A。 【答案点睛】 本题主要考查无穷等比数列求和公式的应用。 2、B 【答案解析】 由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率. 【题目详解】 依题意可得,抛物线的焦点为,F关于原点的对称点;,,所以,,设,则,解得,∴ ,可得,又,,可解得,故双曲线的离心率是. 故选B. 【答案点睛】 本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般. 3、A 【答案解析】 先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为 展开式的常数项,从而求出的值. 【题目详解】 展开式的通项为, 当取2时,常数项为, 当取时,常数项为 由题知,则. 故选:A. 【答案点睛】 本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题. 4、D 【答案解析】 当时,,∴f(x)不关于直线对称; 当时, ,∴f(x)关于点对称; f(x)得周期, 当时, ,∴f(x)在上是增函数. 本题选择D选项. 5、A 【答案解析】 根据换底公式可得,再化简,比较的大小,即得答案. 【题目详解】 , , . ,显然. ,即, ,即. 综上,. 故选:. 【答案点睛】 本题考查换底公式和对数的运算,属于中档题. 6、D 【答案解析】 根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果. 【题目详解】 由题可知: 当时,常数项为 又展开式的二项式系数和为 由 所以 当时, 所以项系数为 故选:D 【答案点睛】 本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题. 7、A 【答案解析】 首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可. 【题目详解】 因为,,,所以,综上可得. 故选:A 【答案点睛】 本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题. 8、B 【答案解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B. 9、A 【答案解析】 解出集合A和B即可求得两个集合的并集. 【题目详解】 ∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3}, B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2}, ∴A∪B={﹣2,﹣1,0,1,2,3}. 故选:A. 【答案点睛】 此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素. 10、C 【答案解析】 根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解. 【题目详解】 双曲线的离心率, 则,,解得,所以焦点坐标为, 所以, 则双曲线渐近线方程为,即, 不妨取右焦点,则由点到直线距离公式可得, 故选:C. 【答案点睛】 本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题. 11、B 【答案解析】 求出,把坐标代入方程可求得. 【题目详解】 据题意,得,所以,所以. 故选:B. 【答案点睛】 本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值. 12、C 【答案解析】 由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出. 【题目详解】 由题意可得莞草与蒲草第n天的长度分别为 据题意得:, 解得2n=12, ∴n21. 故选:C. 【答案点睛】 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。 13、; 【答案解析】 求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值. 【题目详解】 圆:的标准方程为,圆心为, 由题意,即, ∴,当且仅当 ,即时等号成立, 故答案为:. 【答案点睛】 本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求最小值,目的是凑配出基本不等式中所需的“定值”. 14、 【答案解析】 由题意得出展开式中共有11项,;再令求得展开式中各项的系数和. 【题目详解】 由的展开式中只有第六项的二项式系数最大, 所以展开式中共有11项,所以; 令,可求得展开式中各项的系数和是: . 故答案为:1. 【答案点睛】 本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题. 15、 【答案解析】 根据球的表面积求得球的半径,设球心到四棱锥底面的距离为,求得四棱锥的表达式,利用基本不等式求得体积的最大值. 【题目详解】 由已知可得球的半径,设球心到四棱锥底面的距离为,棱锥的高为,底面边长为,的体积 ,当且仅当时等号成立. 故答案为: 【答案点睛】 本小题主要考查球的表面积有关计算,考查球的内接四棱锥体积的最值的求法,属于中档题. 16、 【答案解析】 利用等比数列的性质求得,进而求得,再利用对数运算求得的值. 【题目详解】 由于,,所以,则,∴,,. 故答案为: 【答案点睛】 本小题主要考查等比数列的性质,考查对数运算,属于基础题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1);(2)见解析 【答案解析】 (1)由条件可得,再根据离心率可求得,则可得椭圆方程; (2)当与轴垂直时,设直线的方程为:,与椭圆联立求得的坐标,通过、斜率之积为列方程可得的值,进而可得的面积;当与轴不垂直时,设,,的方程为,与椭圆方程联立,利用韦达定理和、斜率之积为可得,再利用弦长公式求出,以及到的距离,通过三角形的面积公式求解. 【题目详解】 (1)抛物线的焦点为, , ,, ,, 椭圆方程为; (2)(ⅰ)当与轴垂直时,设直线的方程为: 代入得:,, , 解得:, ; (ⅱ)当与轴不垂直时,设,,的方程为 由, 由① , , , 即 整理得: 代入①得: 到的距离 综上:为定值. 【答案点睛】 本题考查椭圆方程的求解,考查直线和椭圆的位置关系,考查韦达定理的应用,考查了学生的计算能力,是中档题. 18、(1);(2)或. 【答案解析】 (1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可; (2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程. 【题目详解】 (

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开