温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
浙江
台州市
书生
中学
第二次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知无穷等比数列的公比为2,且,则( )
A. B. C. D.
2.已知双曲线满足以下条件:①双曲线E的右焦点与抛物线的焦点F重合;②双曲线E与过点的幂函数的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是( )
A. B. C. D.
3.已知的展开式中的常数项为8,则实数( )
A.2 B.-2 C.-3 D.3
4.已知向量,,设函数,则下列关于函数的性质的描述正确的是
A.关于直线对称 B.关于点对称
C.周期为 D.在上是增函数
5.设,则,则( )
A. B. C. D.
6.已知展开式的二项式系数和与展开式中常数项相等,则项系数为( )
A.10 B.32 C.40 D.80
7.已知,则下列关系正确的是( )
A. B. C. D.
8.若,则函数在区间内单调递增的概率是( )
A. B. C. D.
9.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=( )
A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}
10.若双曲线的离心率,则该双曲线的焦点到其渐近线的距离为( )
A. B.2 C. D.1
11.已知变量的几组取值如下表:
1
2
3
4
7
若与线性相关,且,则实数( )
A. B. C. D.
12.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )
(结果采取“只入不舍”的原则取整数,相关数据:,)
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.直线(,)过圆:的圆心,则的最小值是______.
14.若的展开式中只有第六项的二项式系数最大,则展开式中各项的系数和是________.
15.设、、、、是表面积为的球的球面上五点,四边形为正方形,则四棱锥体积的最大值为__________.
16.已知各项均为正数的等比数列的前项积为,,(且),则__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知椭圆:的离心率为,右焦点为抛物线的焦点.
(1)求椭圆的标准方程;
(2)为坐标原点,过作两条射线,分别交椭圆于、两点,若、斜率之积为,求证:的面积为定值.
18.(12分)已知抛物线的准线过椭圆C:(a>b>0)的左焦点F,且点F到直线l:(c为椭圆焦距的一半)的距离为4.
(1)求椭圆C的标准方程;
(2)过点F做直线与椭圆C交于A,B两点,P是AB的中点,线段AB的中垂线交直线l于点Q.若,求直线AB的方程.
19.(12分)已知,函数,(是自然对数的底数).
(Ⅰ)讨论函数极值点的个数;
(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.
20.(12分)设抛物线的焦点为,准线为,为过焦点且垂直于轴的抛物线的弦,已知以为直径的圆经过点.
(1)求的值及该圆的方程;
(2)设为上任意一点,过点作的切线,切点为,证明:.
21.(12分)已知函数,,.函数的导函数在上存在零点.
求实数的取值范围;
若存在实数,当时,函数在时取得最大值,求正实数的最大值;
若直线与曲线和都相切,且在轴上的截距为,求实数的值.
22.(10分)已知函数,为的导数,函数在处取得最小值.
(1)求证:;
(2)若时,恒成立,求的取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。
【题目详解】
因为无穷等比数列的公比为2,则无穷等比数列的公比为。
由有,,解得,所以,
,故选A。
【答案点睛】
本题主要考查无穷等比数列求和公式的应用。
2、B
【答案解析】
由已知可求出焦点坐标为,可求得幂函数为,设出切点通过导数求出切线方程的斜率,利用斜率相等列出方程,即可求出切点坐标,然后求解双曲线的离心率.
【题目详解】
依题意可得,抛物线的焦点为,F关于原点的对称点;,,所以,,设,则,解得,∴ ,可得,又,,可解得,故双曲线的离心率是.
故选B.
【答案点睛】
本题考查双曲线的性质,已知抛物线方程求焦点坐标,求幂函数解析式,直线的斜率公式及导数的几何意义,考查了学生分析问题和解决问题的能力,难度一般.
3、A
【答案解析】
先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为
展开式的常数项,从而求出的值.
【题目详解】
展开式的通项为,
当取2时,常数项为,
当取时,常数项为
由题知,则.
故选:A.
【答案点睛】
本题考查了两个二项式乘积的展开式中的系数问题,其中对所取的项要进行分类讨论,属于基础题.
4、D
【答案解析】
当时,,∴f(x)不关于直线对称;
当时, ,∴f(x)关于点对称;
f(x)得周期,
当时, ,∴f(x)在上是增函数.
本题选择D选项.
5、A
【答案解析】
根据换底公式可得,再化简,比较的大小,即得答案.
【题目详解】
,
,
.
,显然.
,即,
,即.
综上,.
故选:.
【答案点睛】
本题考查换底公式和对数的运算,属于中档题.
6、D
【答案解析】
根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.
【题目详解】
由题可知:
当时,常数项为
又展开式的二项式系数和为
由
所以
当时,
所以项系数为
故选:D
【答案点睛】
本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.
7、A
【答案解析】
首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.
【题目详解】
因为,,,所以,综上可得.
故选:A
【答案点睛】
本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题.
8、B
【答案解析】函数在区间内单调递增, ,在恒成立, 在恒成立, , 函数在区间内单调递增的概率是,故选B.
9、A
【答案解析】
解出集合A和B即可求得两个集合的并集.
【题目详解】
∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},
B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},
∴A∪B={﹣2,﹣1,0,1,2,3}.
故选:A.
【答案点睛】
此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.
10、C
【答案解析】
根据双曲线的解析式及离心率,可求得的值;得渐近线方程后,由点到直线距离公式即可求解.
【题目详解】
双曲线的离心率,
则,,解得,所以焦点坐标为,
所以,
则双曲线渐近线方程为,即,
不妨取右焦点,则由点到直线距离公式可得,
故选:C.
【答案点睛】
本题考查了双曲线的几何性质及简单应用,渐近线方程的求法,点到直线距离公式的简单应用,属于基础题.
11、B
【答案解析】
求出,把坐标代入方程可求得.
【题目详解】
据题意,得,所以,所以.
故选:B.
【答案点睛】
本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.
12、C
【答案解析】
由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.
【题目详解】
由题意可得莞草与蒲草第n天的长度分别为
据题意得:, 解得2n=12,
∴n21.
故选:C.
【答案点睛】
本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
二、填空题:本题共4小题,每小题5分,共20分。
13、;
【答案解析】
求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值.
【题目详解】
圆:的标准方程为,圆心为,
由题意,即,
∴,当且仅当 ,即时等号成立,
故答案为:.
【答案点睛】
本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求最小值,目的是凑配出基本不等式中所需的“定值”.
14、
【答案解析】
由题意得出展开式中共有11项,;再令求得展开式中各项的系数和.
【题目详解】
由的展开式中只有第六项的二项式系数最大,
所以展开式中共有11项,所以;
令,可求得展开式中各项的系数和是:
.
故答案为:1.
【答案点睛】
本小题主要考查二项式展开式的通项公式的运用,考查二项式展开式各项系数和的求法,属于基础题.
15、
【答案解析】
根据球的表面积求得球的半径,设球心到四棱锥底面的距离为,求得四棱锥的表达式,利用基本不等式求得体积的最大值.
【题目详解】
由已知可得球的半径,设球心到四棱锥底面的距离为,棱锥的高为,底面边长为,的体积
,当且仅当时等号成立.
故答案为:
【答案点睛】
本小题主要考查球的表面积有关计算,考查球的内接四棱锥体积的最值的求法,属于中档题.
16、
【答案解析】
利用等比数列的性质求得,进而求得,再利用对数运算求得的值.
【题目详解】
由于,,所以,则,∴,,.
故答案为:
【答案点睛】
本小题主要考查等比数列的性质,考查对数运算,属于基础题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1);(2)见解析
【答案解析】
(1)由条件可得,再根据离心率可求得,则可得椭圆方程;
(2)当与轴垂直时,设直线的方程为:,与椭圆联立求得的坐标,通过、斜率之积为列方程可得的值,进而可得的面积;当与轴不垂直时,设,,的方程为,与椭圆方程联立,利用韦达定理和、斜率之积为可得,再利用弦长公式求出,以及到的距离,通过三角形的面积公式求解.
【题目详解】
(1)抛物线的焦点为,
,
,,
,,
椭圆方程为;
(2)(ⅰ)当与轴垂直时,设直线的方程为:
代入得:,,
,
解得:,
;
(ⅱ)当与轴不垂直时,设,,的方程为
由,
由①
,
,
,
即
整理得:
代入①得:
到的距离
综上:为定值.
【答案点睛】
本题考查椭圆方程的求解,考查直线和椭圆的位置关系,考查韦达定理的应用,考查了学生的计算能力,是中档题.
18、(1);(2)或.
【答案解析】
(1)由抛物线的准线方程求出的值,确定左焦点坐标,再由点F到直线l:的距离为4,求出即可;
(2)设直线方程,与椭圆方程联立,运用根与系数关系和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.
【题目详解】
(