分享
2023学年河南省项城市第三高级中学高三下第一次测试数学试题(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河南省 项城市 第三 高级 中学 下第 一次 测试 数学试题 解析
2023学年高考数学模拟测试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析. ①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内; ③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关; ④乙同学连续九次测验成绩每一次均有明显进步. 其中正确的个数为(  ) A. B. C. D. 2.设、是两条不同的直线,、是两个不同的平面,则的一个充分条件是( ) A.且 B.且 C.且 D.且 3.等比数列的各项均为正数,且,则( ) A.12 B.10 C.8 D. 4.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为( ) A. B. C. D. 5.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A.内切 B.相交 C.外切 D.相离 6.执行如图所示的程序框图,若输入的,则输出的( ) A.9 B.31 C.15 D.63 7.设集合,,则集合 A. B. C. D. 8.设实数满足条件则的最大值为( ) A.1 B.2 C.3 D.4 9.已知,函数在区间内没有最值,给出下列四个结论: ①在上单调递增; ② ③在上没有零点; ④在上只有一个零点. 其中所有正确结论的编号是( ) A.②④ B.①③ C.②③ D.①②④ 10.过抛物线的焦点的直线交该抛物线于,两点,为坐标原点.若,则直线的斜率为( ) A. B. C. D. 11.在原点附近的部分图象大概是( ) A. B. C. D. 12.已知三点A(1,0),B(0, ),C(2,),则△ABC外接圆的圆心到原点的距离为(  ) A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.已知向量=(1,2),=(-3,1),则=______. 14.棱长为的正四面体与正三棱锥的底面重合,若由它们构成的多面体的顶点均在一球的球面上,则正三棱锥的内切球半径为______. 15.若实数满足不等式组则目标函数的最大值为__________. 16.的展开式中,的系数是__________. (用数字填写答案) 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知数列中,,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”. (1)若数列为“数列”,求数列的前项和; (2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由. 18.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接. (1)求证:平面; (2)求二面角的余弦值. 19.(12分)在等比数列中,已知,.设数列的前n项和为,且,(,). (1)求数列的通项公式; (2)证明:数列是等差数列; (3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由. 20.(12分)在中,内角,,所对的边分别是,,,,,. (Ⅰ)求的值; (Ⅱ)求的值. 21.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图: (1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由; (2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润; (3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望. 22.(10分)如图,在四棱锥中,,,. (1)证明:平面; (2)若,,为线段上一点,且,求直线与平面所成角的正弦值. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可. 【题目详解】 ①甲同学的成绩折线图具有较好的对称性,最高分,平均成绩为低于分,①错误; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内,②正确; ③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确; ④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确. 故选:C. 【答案点睛】 本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题. 2、B 【答案解析】 由且可得,故选B. 3、B 【答案解析】 由等比数列的性质求得,再由对数运算法则可得结论. 【题目详解】 ∵数列是等比数列,∴,, ∴. 故选:B. 【答案点睛】 本题考查等比数列的性质,考查对数的运算法则,掌握等比数列的性质是解题关键. 4、D 【答案解析】 先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围. 【题目详解】 由已知得,则. 因为,数列是单调递增数列, 所以,则, 化简得,所以. 故选:D. 【答案点睛】 本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题. 5、B 【答案解析】 化简圆到直线的距离 , 又 两圆相交. 选B 6、B 【答案解析】 根据程序框图中的循环结构的运算,直至满足条件退出循环体,即可得出结果. 【题目详解】 执行程序框;;; ;;, 满足,退出循环,因此输出, 故选:B. 【答案点睛】 本题考查循环结构输出结果,模拟程序运行是解题的关键,属于基础题. 7、B 【答案解析】 先求出集合和它的补集,然后求得集合的解集,最后取它们的交集得出结果. 【题目详解】 对于集合A,,解得或,故.对于集合B,,解得.故.故选B. 【答案点睛】 本小题主要考查一元二次不等式的解法,考查对数不等式的解法,考查集合的补集和交集的运算.对于有两个根的一元二次不等式的解法是:先将二次项系数化为正数,且不等号的另一边化为,然后通过因式分解,求得对应的一元二次方程的两个根,再利用“大于在两边,小于在中间”来求得一元二次不等式的解集. 8、C 【答案解析】 画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【题目详解】 如图所示:画出可行域和目标函数, ,即,表示直线在轴的截距加上1, 根据图像知,当时,且时,有最大值为. 故选:. 【答案点睛】 本题考查了线性规划问题,画出图像是解题的关键. 9、A 【答案解析】 先根据函数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解. 【题目详解】 因为函数在区间内没有最值. 所以,或 解得或. 又,所以. 令.可得.且在上单调递减. 当时,,且, 所以在上只有一个零点. 所以正确结论的编号②④ 故选:A. 【答案点睛】 本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平. 10、D 【答案解析】 根据抛物线的定义,结合,求出的坐标,然后求出的斜率即可. 【题目详解】 解:抛物线的焦点,准线方程为, 设,则,故,此时,即. 则直线的斜率. 故选:D. 【答案点睛】 本题考查了抛物线的定义,直线斜率公式,属于中档题. 11、A 【答案解析】 分析函数的奇偶性,以及该函数在区间上的函数值符号,结合排除法可得出正确选项. 【题目详解】 令,可得,即函数的定义域为,定义域关于原点对称, ,则函数为奇函数,排除C、D选项; 当时,,,则,排除B选项. 故选:A. 【答案点睛】 本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题. 12、B 【答案解析】 选B. 考点:圆心坐标 二、填空题:本题共4小题,每小题5分,共20分。 13、-6 【答案解析】 由可求,然后根据向量数量积的坐标表示可求 . 【题目详解】 ∵=(1,2),=(-3,1),∴=(-4,-1), 则 =1×(-4)+2×(-1)=-6 故答案为-6 【答案点睛】 本题主要考查了向量数量积的坐标表示,属于基础试题. 14、 【答案解析】 由棱长为的正四面体求出外接球的半径,进而求出正三棱锥的高及侧棱长,可得正三棱锥的三条侧棱两两相互垂直,进而求出体积与表面积,设内切圆的半径,由等体积,求出内切圆的半径. 【题目详解】 由题意可知: 多面体的外接球即正四面体的外接球 作面交于,连接,如图 则,且为外接球的直径,可得 , 设三角形 的外接圆的半径为,则,解得, 设外接球的半径为,则可得, 即,解得, 设正三棱锥的高为, 因为,所以, 所以, 而, 所以正三棱锥的三条侧棱两两相互垂直, 所以, 设内切球的半径为,, 即解得:. 故答案为:. 【答案点睛】 本题考查多面体与球的内切和外接问题,考查转化与化归思想,考查空间想象能力、运算求解能力,求解时注意借助几何体的直观图进行分析. 15、12 【答案解析】 画出约束条件的可行域,求出最优解,即可求解目标函数的最大值. 【题目详解】 根据约束条件画出可行域,如下图,由,解得 目标函数,当过点时,有最大值,且最大值为. 故答案为:. 【答案点睛】 本题考查线性规划的简单应用,属于基础题. 16、 【答案解析】 根据组合的知识,结合组合数的公式,可得结果. 【题目详解】 由题可知:项来源可以是:(1)取1个,4个 (2)取2个,3个 的系数为: 故答案为: 【答案点睛】 本题主要考查组合的知识,熟悉二项式定理展开式中每一项的来源,实质上每个因式中各取一项的乘积,转化为组合的知识,属中档题. 三、解答题:共70分。解答应写出文字说明、证明过程或演算

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开