温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
泰州
中学
下学
第五
调研
考试
数学试题
解析
2023学年高考数学模拟测试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.点在曲线上,过作轴垂线,设与曲线交于点,,且点的纵坐标始终为0,则称点为曲线上的“水平黄金点”,则曲线上的“水平黄金点”的个数为( )
A.0 B.1 C.2 D.3
2.刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为( )
A. B. C. D.
3.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.
①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;
②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;
③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;
④乙同学连续九次测验成绩每一次均有明显进步.
其中正确的个数为( )
A. B. C. D.
4.如图,是圆的一条直径,为半圆弧的两个三等分点,则( )
A. B. C. D.
5.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是( )
A. B. C. D.
6.函数在上为增函数,则的值可以是( )
A.0 B. C. D.
7.在中,“”是“为钝角三角形”的( )
A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既不充分也不必要条件
8.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的( ).
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
9.已知等差数列的前n项和为,,则
A.3 B.4 C.5 D.6
10.已知函数,当时,的取值范围为,则实数m的取值范围是( )
A. B. C. D.
11.如图是正方体截去一个四棱锥后的得到的几何体的三视图,则该几何体的体积是( )
A. B. C. D.
12.设为虚数单位,为复数,若为实数,则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.展开式中项系数为160,则的值为______.
14.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________.
15.等边的边长为2,则在方向上的投影为________.
16.已知等比数列的各项都是正数,且成等差数列,则=__________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知函数.
(1)当时,不等式恒成立,求的最小值;
(2)设数列,其前项和为,证明:.
18.(12分)设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.
(1)求p的值;
(2)求证:数列{an}为等比数列;
(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.
19.(12分)已知函数.
(1)若在上为单调函数,求实数a的取值范围:
(2)若,记的两个极值点为,,记的最大值与最小值分别为M,m,求的值.
20.(12分)已知函数.
(1)当时,求不等式的解集;
(2)若对任意成立,求实数的取值范围.
21.(12分)已知函数.
(1)求函数的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若满足,,,求.
22.(10分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,,为其右焦点,,且该椭圆的离心率为;
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点.若,求取值范围.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
设,则,则,即可得,设,利用导函数判断的零点的个数,即为所求.
【题目详解】
设,则,所以,
依题意可得,
设,则,
当时,,则单调递减;当时,,则单调递增,
所以,且,
有两个不同的解,所以曲线上的“水平黄金点”的个数为2.
故选:C
【答案点睛】
本题考查利用导函数处理零点问题,考查向量的坐标运算,考查零点存在性定理的应用.
2、A
【答案解析】
设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.
【题目详解】
由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,
设圆的半径为,每个等腰三角形的顶角为,
所以每个等腰三角形的面积为,
所以圆的面积为,即,
所以当时,可得,
故选:A
【答案点睛】
本题考查三角形面积公式的应用,考查阅读分析能力.
3、C
【答案解析】
利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可.
【题目详解】
①甲同学的成绩折线图具有较好的对称性,最高分,平均成绩为低于分,①错误;
②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内,②正确;
③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;
④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.
故选:C.
【答案点睛】
本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题.
4、B
【答案解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;
【题目详解】
解:连接、,
,是半圆弧的两个三等分点, ,且,
所以四边形为棱形,
.
故选:B
【答案点睛】
本题考查平面向量的数量积及其运算律的应用,属于基础题.
5、C
【答案解析】
连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.
【题目详解】
如图,连接,
椭圆:的右顶点为A,右焦点为F,
B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,
直线BF交直线AC于M,且M为AC的中点
为的中位线,
,且,
,
解得椭圆的离心率.
故选:C
【答案点睛】
本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.
6、D
【答案解析】
依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.
【题目详解】
当时,在上不单调,故A不正确;
当时,在上单调递减,故B不正确;
当时,在上不单调,故C不正确;
当时,在上单调递增,故D正确.
故选:D
【答案点睛】
本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.
7、C
【答案解析】
分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.
详解:由题意可得,在中,因为,
所以,因为,
所以,,
结合三角形内角的条件,故A,B同为锐角,因为,
所以,即,所以,
因此,所以是锐角三角形,不是钝角三角形,
所以充分性不满足,
反之,若是钝角三角形,也推不出“,故必要性不成立,
所以为既不充分也不必要条件,故选D.
点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.
8、A
【答案解析】
作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.
【题目详解】
作出函数的图象如图,
由图可知,,
函数有2个零点,即有两个不同的根,
也就是与在上有2个交点,则的最小值为;
设过原点的直线与的切点为,斜率为,
则切线方程为,
把代入,可得,即,∴切线斜率为,
∴k的取值范围是,
∴函数有两个零点”是“”的充分不必要条件,
故选A.
【答案点睛】
本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.
9、C
【答案解析】
方法一:设等差数列的公差为,则,解得,所以.故选C.
方法二:因为,所以,则.故选C.
10、C
【答案解析】
求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.
【题目详解】
当时,,
令,则;,则,
∴函数在单调递增,在单调递减.
∴函数在处取得极大值为,
∴时,的取值范围为,
∴
又当时,令,则,即,
∴
综上所述,的取值范围为.
故选C.
【答案点睛】
本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.
11、C
【答案解析】
根据三视图作出几何体的直观图,结合三视图的数据可求得几何体的体积.
【题目详解】
根据三视图还原几何体的直观图如下图所示:
由图可知,该几何体是在棱长为的正方体中截去四棱锥所形成的几何体,
该几何体的体积为.
故选:C.
【答案点睛】
本题考查利用三视图计算几何体的体积,考查空间想象能力与计算能力,属于基础题.
12、B
【答案解析】
可设,将化简,得到,由复数为实数,可得,解方程即可求解
【题目详解】
设,则.
由题意有,所以.
故选:B
【答案点睛】
本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题
二、填空题:本题共4小题,每小题5分,共20分。
13、-2
【答案解析】
表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.
【题目详解】
该二项式的展开式的第r+1项为
令,所以,则
故答案为:
【答案点睛】
本题考查由二项式指定项的系数求参数,属于简单题.
14、
【答案解析】
设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.
【题目详解】
如图,
设双曲线的左焦点为,连接,由于.所以四边形为矩形,
故.
在中,
由双曲线的定义可得
,
.
故答案为:
【答案点睛】
本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.
15、
【答案解析】
建立直角坐标系,结合向量的坐标运算求解在方向上的投影即可.
【题目详解】
建立如图所示的平面直角坐标系,由题意可知:,,,
则:,,
且,,
据此可知在方向上的投影为.
【答案点睛】
本题主要考查平面向量数量积的坐标运算,向量投影的