温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
河南省
荥阳
高中
第二次
调研
数学试卷
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知,若,则等于( )
A.3 B.4 C.5 D.6
2.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为( )
A. B. C. D.
3.已知集合,,,则的子集共有( )
A.个 B.个 C.个 D.个
4.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为( )
A. B. C. D.
5.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于( )
A. B. C. D.
6.用一个平面去截正方体,则截面不可能是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
7.已知(i为虚数单位,),则ab等于( )
A.2 B.-2 C. D.
8.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为
A.96 B.84 C.120 D.360
9.设双曲线(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点D.若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )
A.
B.
C.
D.
10.设函数,则函数的图像可能为( )
A. B. C. D.
11.已知为等差数列,若,,则( )
A.1 B.2 C.3 D.6
12.执行如图所示的程序框图,若输入,,则输出的值为( )
A.0 B.1 C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.双曲线的焦点坐标是_______________,渐近线方程是_______________.
14.在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)求直线和曲线的普通方程;
(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.
15.某几何体的三视图如图所示(单位:),则该几何体的体积是_____;最长棱的长度是_____.
16.在矩形中,,为的中点,将和分别沿,翻折,使点与重合于点.若,则三棱锥的外接球的表面积为_____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用
(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;
(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:
x
10
15
20
25
30
35
40
y
10000
11761
13010
13980
14771
15440
16020
2.99
3.49
4.05
4.50
4.99
5.49
5.99
①用最小二乘法求与的回归直线方程;
②叫做篮球馆月惠值,根据①的结论,试估计这四个篮球馆月惠值最大时的值
参考数据和公式:,
18.(12分)设函数.
(1)时,求的单调区间;
(2)当时,设的最小值为,若恒成立,求实数t的取值范围.
19.(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.
(1)求圆的极坐标方程;
(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.
20.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数,).以坐标原点 为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为.
(l)求直线的普通方程和曲线C的直角坐标方程:
(2)若直线与曲线C相交于A,B两点,且.求直线 的方程.
21.(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.
(1)若,求的前项和;
(2)证明:的“极差数列”仍是;
(3)求证:若数列是等差数列,则数列也是等差数列.
22.(10分)已知.
(1)解不等式;
(2)若均为正数,且,求的最小值.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
先求出,再由,利用向量数量积等于0,从而求得.
【题目详解】
由题可知,
因为,所以有,得,
故选:C.
【答案点睛】
该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.
2、C
【答案解析】
如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.
【题目详解】
如图所示:在平面的投影为正方形的中心,故球心在上,
,故,,
设球半径为,则,解得,故.
故选:.
【答案点睛】
本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.
3、B
【答案解析】
根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.
【题目详解】
由题可知:,
当时,
当时,
当时,
当时,
所以集合
则
所以的子集共有
故选:B
【答案点睛】
本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.
4、B
【答案解析】
试题分析:由题意得,,所以,,所求双曲线方程为.
考点:双曲线方程.
5、A
【答案解析】
根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.
【题目详解】
由于复数对应复平面上的点,,则,
,,因此,.
故选:A.
【答案点睛】
本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.
6、C
【答案解析】
试题分析:画出截面图形如图
显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C.
考点:平面的基本性质及推论.
7、A
【答案解析】
利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.
【题目详解】
,
,得,.
.
故选:.
【答案点睛】
本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.
8、B
【答案解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0开头的排列数共个,其中含有2个10的排列数共个,所以产生的不同的6位数的个数为.故选B.
9、A
【答案解析】
由题意,
根据双曲线的对称性知在轴上,设,则由
得:,
因为到直线的距离小于,所以
,
即,所以双曲线渐近线斜率,故选A.
10、B
【答案解析】
根据函数为偶函数排除,再计算排除得到答案.
【题目详解】
定义域为:
,函数为偶函数,排除
,排除
故选
【答案点睛】
本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.
11、B
【答案解析】
利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出.
【题目详解】
∵{an}为等差数列,,
∴,
解得=﹣10,d=3,
∴=+4d=﹣10+11=1.
故选:B.
【答案点睛】
本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.
12、A
【答案解析】
根据输入的值大小关系,代入程序框图即可求解.
【题目详解】
输入,,
因为,所以由程序框图知,
输出的值为.
故选:A
【答案点睛】
本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
通过双曲线的标准方程,求解,,即可得到所求的结果.
【题目详解】
由双曲线,可得,,则,
所以双曲线的焦点坐标是,
渐近线方程为:.
故答案为:;.
【答案点睛】
本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题.
14、(1),;(2),.
【答案解析】
(1)利用代入消参的方法即可将两个参数方程转化为普通方程;
(2)利用参数方程,结合点到直线的距离公式,将问题转化为求解二次函数最值的问题,即可求得.
【题目详解】
(1)直线的普通方程为.
在曲线的参数方程中,,
所以曲线的普通方程为.
(2)设点.
点到直线的距离.
当时,,所以点到直线的距离的最小值为.
此时点的坐标为.
【答案点睛】
本题考查将参数方程转化为普通方程,以及利用参数方程求距离的最值问题,属中档题.
15、
【答案解析】
由三视图还原原几何体,该几何体为四棱锥,底面为直角梯形,,,侧棱底面,由棱锥体积公式求棱锥体积,由勾股定理求最长棱的长度.
【题目详解】
由三视图还原原几何体如下图所示:
该几何体为四棱锥,底面为直角梯形,,,侧棱底面,
则该几何体的体积为,
,,
因此,该棱锥的最长棱的长度为.
故答案为:;.
【答案点睛】
本题考查由三视图求体积、棱长,关键是由三视图还原原几何体,是中档题.
16、.
【答案解析】
计算外接圆的半径,并假设外接球的半径为R,可得球心在过外接圆圆心且垂直圆面的垂线上,然后根据面,即可得解.
【题目详解】
由题意可知,,
所以可得面,
设外接圆的半径为,
由正弦定理可得,即,,
设三棱锥外接球的半径,
因为外接球的球心为过底面圆心垂直于底面的直线与中截面的交点,
则,
所以外接球的表面积为.
故答案为:.
【答案点睛】
本题考查三棱锥的外接球的应用,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)见解析,12.5(2)①②20
【答案解析】
(1) 运用分层抽样,结合总场次为100,可求得的值,再运用古典概型的概率计算公式可求解果;
(2) ①由公式可计算的值,进而可求与的回归直线方程;
②求出,再对函数求导,结合单调性,可估计这四个篮球馆月惠值最大时的值.
【题目详解】
解:(1)抽样比为,所以分别是,6,7,8,5
所以两数之和所有可能取值是:10,12,13,15
,,,
所以分布列为
期望为
(2)因为
所以,,
;
②,
设,
所以当递增,当递减
所以约惠值最大值时的值为20
【答案点睛】
本题考查直方图的实际应用,涉及求概率,平均数、拟合直线和导数等问题,关键是要读懂题意,属于中档题.
18、(1)的增区间为,减区间为;(2).
【答案解析】
(1)求出函数的导数,由于参数的范围对导数的符号有影响,对参数分类,再研究函数的单调区间;
(2)由(1)的结论,求出的表达式,由于恒成立,故求出的最大值,即得实数的取值范围的左端点.
【题目详解】
解:(1)解:,
当时,,解得的增区间为,
解得的减区间为.
(2)解: