温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
一元
一次
不等式
解法
师大
一元一次不等式和它的解法
例1 判断以下各式是不是一元一次不等式?
分析:判断一个式子是不是一元一次不等式,看这个式子是不是只含有一个未知数,并且未知数的次数是一次的不等式.
解:(1)是一元一次不等式;
(3)是一元一次不等式;
(2)和(4)不是一元一次不等式.
例2
分析:两题都可以按通常的三步骤解.对于(1)题也可以根据两边都有分母为4的项的特点,可以先移项,合并分子的同类项后,再去分母.对于(2)也是可以先去中括号,得到5(x-3)>5后,再两边除以5,得到x-3>1.
答案:
说明:去分母时分数线相当于括号,同时不要漏乘不含分母的项.最关键要处理好乘或除一个数时不等号的方向问题.
例3
分析:不等式中含有分母,应先根据不等式的同解原理2去掉分母,再作其他变形,在去分母时,不要漏乘没有分母的“项〞.
解:去分母,得
24-2(x-1)≥16+3(x+1)
去括号,得
24-2x+2≥16+3x+3
移项,得
-2x-3x≥16+3-24-2
合并同类项,得
-5x≥-7
把系数化为1,得
这个不等式的解集在数轴上的表示如以以下图所示:
例4 解答题
(2)求不等式10(x+4)+x≤84的非负整数解.
分析:对(1)小题中要明白“不小于〞即“大于或等于〞,用符号表示即为“≥〞;(2)小题非负整数,即指正数或零中的整数,所以此题的不等式的解必须是正整数或零.在求解过程中注意正确运用不等式性质.
解:
∴ 120-8x≥84-3(4x+1)
(2)∵10(x+4)+x≤84
∴10x+40+x≤84
∴11x≤44
∴x≤4
因为不大于4的非负整数有0,1,2,3,4五个,所以不等式10(x+4)+x≤84的非负整数解是4,3,2,1,0.
例5 解关于x的不等式
(1)ax+2≤bx-1 (2)m(m-x)>n(n-x)
分析:解字母系数的不等式与解数字系数不等式的方法、步骤都是类似的,只是在求解过程中常要对字母系数进行讨论,这就增加了题目的难度.此类问题主要考察了对问题的分析、分类的能力:它不但要知道什么时候该进行分类讨论,而且还要求能准确地分出类别来进行讨论(结合例题解法再给与说明).
解:(1)∵ax+2≤bx-1
∴ax-bx≤-1-2
即 (a-b)x≤-3
此时要依x字母系数的不同取值,分别求出不等式的解的形式.
即(n-m)x>n2-m2
当m>n时,n-m<0,∴x<n+m;
当m<n时,n-m>0,∴x>n+m;
当m=n时,n-m=0,n2=m2,n2-m2=0,原不等式无解.这是因为此时无论x取任何值时,不等式两边的值都为零,只能是相等的,所以不等式不成立.
例6 解关于x的不等式
3(a+1)x+3a≥2ax+3.
分析:由于x是未知数,所以把a看作数,又由于a可以是任意有理数,所以在应用同解原理时,要区别情况,分别处理.
解:去括号,得
3ax+3x+3a≥2ax+3
移项,得
3ax+3x-2ax≥3-3a
合并同类项,得
(a+3)x≥3-3a
(3)当a+3=0,即a=-3,得0·x≥12
这个不等式无解.
说明:在处理字母系数的不等式时,首先要弄清哪一个字母是未知数,而把其它字母看作数,在运用同解原理把未知数的系数化为1时,应作合理的分类,逐一讨论.
例7 m为何值时,关于x的方程3(2x-3m)-2(x+4m)=4(5-x)的解是非正数.
分析:根据题意,应先把m当作数解方程,然后根据解的条件列出关于m的不等式,再解这个不等式求出m的值或范围.注意:“非正数〞是小于或等于零的数.
解:由方程有6x-9m-2x-8m=20-4x
可解得 8x=20+17m
方程的解是非正数,所以
例8 假设关于x的方程5x-(4k-1)=7x+4k-3的解是:(1)非负数,(2)负数,试确定k的取值范围.
分析:要确定k的范围,应将k作为数看待,按解一元一次方程的步骤求得方程的解x(用k的代数式表示之).这时再根据题中方程的解是非负数或是负数得到关于k的不等式,求出k的取值范围.这里要强调的是此题不是直接去解不等式,而是依条件获得不等式,属于不等式的应用.
解:由方程有5x-4k+1=7x+4k-3
可解得 -2x=8k-4
即 x=2(1-2k)
(1)方程的解是非负数,所以
(2)方程的解是负数,所以
例9 当x在什么范围内取值时,代数式-3x+5的值:
(1)是负数 (2)大于-4
(3)小于-2x+3 (4)不大于4x-9
分析:解题的关键是把“是负数〞,“大于〞,“小于〞,“不大于〞等文字语言准确地翻译成数字符号.
解:(1)根据题意,应求不等式
-3x+5<0的解集
解这个不等式,得
(2)根据题意,应求不等式
-3x+5>-4的解集
解这个不等式,得
x<3
所以当x取小于3的值时,-3x+5的值大于-4.
(3)根据题意,应求不等式
-3x+5<-2x+3的解集
-3x+2x<3-5
-x<-2
x>2
所以当x取大于2的值时,-3x+5的值小于-2x+3.
(4)根据题意,应求不等式
-3x+5≤4x-9的解集
-3x-4x≤-9-5
-7x≤-14
x≥2
所以当x取大于或等于2的值时,-3x+5的值不大于4x-9.
例10
分析:
解不等式,求出x的范围.
解:
说明:应用不等式知识解决数学问题时,要弄清题意,分析问题中数量之间的关系,正确地表示出数学式子.如“不超过〞即为“小于或等于〞,“至少小2〞,表示不仅少2,而且还可以少得比2更多.
例11 三个连续正整数的和不大于17,求这三个数.
分析:
解:设三个连续正整数为n-1,n,n+1
根据题意,列不等式,得
n-1+n+n+1≤17
所以有四组:1、2、3;2、3、4;3、4、5;4、5、6.
说明:解此类问题时解集的完整性不容无视.如不等式x<3的正整数解是1、2,它的非负整数解是0、1、2.
例12 将℃的冷水参加某种电热淋浴器内,现要求热水温度不超过40℃,如果淋浴器每分钟可把水温上升℃,问通电最多多少分钟,水温才适宜?
分析:设通电最多x分钟,水温才适宜.那么通电x分钟水温上升了℃,这时水温是+0.9x)℃,根据题意,应列出不等式+≤40,解得,x≤24.
答案:通电最多24分,水温才适宜.
说明:解答此类问题时,对那些不确定的条件一定要充分考虑,并“翻译〞成数学式子,以免得出失去实际意义或不全面的结论.
例13 矿山爆破时,为了确保平安,点燃引火线后,人要在爆破前转移到300米以外的平安地区.引火线燃烧的速度是厘米/秒,人离开速度是5米/秒,问引火线至少需要多少厘米?
解:设引火线长为x厘米,
根据题意,列不等式,得
解之得,x≥48(厘米)
答:引火线至少需要48厘米.
x例14 解不等式|2x+1|<4.
解:把2x+1看成一个整体y,由于当-4<y<4时,有|y|<4,即-4<2x+1<4,得: