分享
2023学年河南省师范大学附属中学高三(最后冲刺)数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河南省 师范大学 附属中学 最后 冲刺 数学试卷 解析
2023学年高考数学模拟测试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.正三棱柱中,,是的中点,则异面直线与所成的角为( ) A. B. C. D. 2.执行下面的程序框图,则输出的值为 ( ) A. B. C. D. 3.运行如图所示的程序框图,若输出的的值为99,则判断框中可以填( ) A. B. C. D. 4.设全集集合,则( ) A. B. C. D. 5.如图,在三棱锥中,平面,,,,,分别是棱,,的中点,则异面直线与所成角的余弦值为 A.0 B. C. D.1 6.已知是函数的极大值点,则的取值范围是 A. B. C. D. 7.函数的图像大致为( ). A. B. C. D. 8.曲线在点处的切线方程为,则( ) A. B. C.4 D.8 9.设函数满足,则的图像可能是 A. B. C. D. 10.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动, 且总是平行于轴, 则的周长的取值范围是( ) A. B. C. D. 11.命题“”的否定为( ) A. B. C. D. 12.在等差数列中,若,则( ) A.8 B.12 C.14 D.10 二、填空题:本题共4小题,每小题5分,共20分。 13.定义在上的奇函数满足,并且当时,则___ 14.在平面直角坐标系中,曲线上任意一点到直线的距离的最小值为________. 15.若,则的最小值为________. 16.已知实数,满足,则目标函数的最小值为__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)已知函数(,为自然对数的底数),. (1)若有两个零点,求实数的取值范围; (2)当时,对任意的恒成立,求实数的取值范围. 18.(12分)已知,均为给定的大于1的自然数,设集合, . (Ⅰ)当,时,用列举法表示集合; (Ⅱ)当时,,且集合满足下列条件: ①对任意,; ②. 证明:(ⅰ)若,则(集合为集合在集合中的补集); (ⅱ)为一个定值(不必求出此定值); (Ⅲ)设,,,其中,,若,则. 19.(12分)设函数,,其中,为正实数. (1)若的图象总在函数的图象的下方,求实数的取值范围; (2)设,证明:对任意,都有. 20.(12分)已知分别是椭圆的左、右焦点,直线与交于两点,,且. (1)求的方程; (2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值. 21.(12分)已知曲线的参数方程为 为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系. (1)求曲线的极坐标方程,并说明其表示什么轨迹; (2)若直线的极坐标方程为,求曲线上的点到直线的最大距离. 22.(10分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之和为L. (1)试用x,y表示L; (2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)? 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、C 【答案解析】 取中点,连接,,根据正棱柱的结构性质,得出//,则即为异面直线与所成角,求出,即可得出结果. 【题目详解】 解:如图,取中点,连接,, 由于正三棱柱,则底面, 而底面,所以, 由正三棱柱的性质可知,为等边三角形, 所以,且, 所以平面, 而平面,则, 则//,, ∴即为异面直线与所成角, 设,则,,, 则, ∴. 故选:C. 【答案点睛】 本题考查通过几何法求异面直线的夹角,考查计算能力. 2、D 【答案解析】 根据框图,模拟程序运行,即可求出答案. 【题目详解】 运行程序, , , , , , ,结束循环, 故输出, 故选:D. 【答案点睛】 本题主要考查了程序框图,循环结构,条件分支结构,属于中档题. 3、C 【答案解析】 模拟执行程序框图,即可容易求得结果. 【题目详解】 运行该程序: 第一次,,; 第二次,,; 第三次,,, …; 第九十八次,,; 第九十九次,,, 此时要输出的值为99. 此时. 故选:C. 【答案点睛】 本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题. 4、A 【答案解析】 先求出,再与集合N求交集. 【题目详解】 由已知,,又,所以. 故选:A. 【答案点睛】 本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题. 5、B 【答案解析】 根据题意可得平面,,则即异面直线与所成的角,连接CG,在中,,易得,所以,所以,故选B. 6、B 【答案解析】 方法一:令,则,, 当,时,,单调递减, ∴时,,,且, ∴,即在上单调递增, 时,,,且, ∴,即在上单调递减,∴是函数的极大值点,∴满足题意; 当时,存在使得,即, 又在上单调递减,∴时,,所以, 这与是函数的极大值点矛盾. 综上,.故选B. 方法二:依据极值的定义,要使是函数的极大值点,须在的左侧附近,,即;在的右侧附近,,即.易知,时,与相切于原点,所以根据与的图象关系,可得,故选B. 7、A 【答案解析】 本题采用排除法: 由排除选项D; 根据特殊值排除选项C; 由,且无限接近于0时, 排除选项B; 【题目详解】 对于选项D:由题意可得, 令函数 , 则,; 即.故选项D排除; 对于选项C:因为,故选项C排除; 对于选项B:当,且无限接近于0时,接近于,,此时.故选项B排除; 故选项:A 【答案点睛】 本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题. 8、B 【答案解析】 求函数导数,利用切线斜率求出,根据切线过点求出即可. 【题目详解】 因为, 所以, 故, 解得, 又切线过点, 所以,解得, 所以, 故选:B 【答案点睛】 本题主要考查了导数的几何意义,切线方程,属于中档题. 9、B 【答案解析】 根据题意,确定函数的性质,再判断哪一个图像具有这些性质. 由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B. 10、B 【答案解析】 根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围. 【题目详解】 抛物线,则焦点,准线方程为, 根据抛物线定义可得, 圆,圆心为,半径为, 点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2. 点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知, 则的周长为, 所以, 故选:B. 【答案点睛】 本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题. 11、C 【答案解析】 套用命题的否定形式即可. 【题目详解】 命题“”的否定为“”,所以命题“”的否定为“”. 故选:C 【答案点睛】 本题考查全称命题的否定,属于基础题. 12、C 【答案解析】 将,分别用和的形式表示,然后求解出和的值即可表示. 【题目详解】 设等差数列的首项为,公差为, 则由,,得解得,, 所以.故选C. 【答案点睛】 本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 根据所给表达式,结合奇函数性质,即可确定函数对称轴及周期性,进而由的解析式求得的值. 【题目详解】 满足, 由函数对称性可知关于对称, 且令,代入可得, 由奇函数性质可知,所以 令,代入可得, 所以是以4为周期的周期函数, 则 当时, 所以, 所以, 故答案为:. 【答案点睛】 本题考查了函数奇偶性与对称性的综合应用,周期函数的判断及应用,属于中档题. 14、 【答案解析】 解法一:曲线上任取一点,利用基本不等式可求出该点到直线的距离的最小值; 解法二:曲线函数解析式为,由求出切点坐标,再计算出切点到直线的距离即可所求答案. 【题目详解】 解法一(基本不等式):在曲线上任取一点, 该点到直线的距离为, 当且仅当时,即当时,等号成立, 因此,曲线上任意一点到直线距离的最小值为; 解法二(导数法):曲线的函数解析式为,则, 设过曲线上任意一点的切线与直线平行,则,解得, 当时,到直线的距离; 当时,到直线的距离. 所以曲线上任意一点到直线的距离的最小值为. 故答案为:. 【答案点睛】 本题考查曲线上一点到直线距离最小值的计算,可转化为利用切线与直线平行来找出切点,转化为切点到直线的距离,也可以设曲线上的动点坐标,利用基本不等式法或函数的最值进行求解,考查分析问题和解决问题的能力,属于中等题. 15、 【答案解析】 由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。 【题目详解】 由题意,,当且仅当时等号成立, 所以,当且仅当时取等号, 所以当时,取得最小值. 【答案点睛】 利用基本不等式求最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③等号取得的条件。 16、-1 【答案解析】 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值. 【题目详解】 作出实数x,y满足对应的平面区域如图阴影所示; 由z=x+2y﹣1,得yx, 平移直线yx,由图象可知当直线yx经过点A时, 直线yx的纵截距最小,此时z最小. 由,得A(﹣1,﹣1), 此时z的最小值为z=﹣1﹣2﹣1=﹣1, 故答案为﹣1. 【答案点睛】 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17、(1);(2) 【答案解析】 (1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解; (2)将问题转化为对一切恒成立,令,求导,研究单调性,求出其最值即可得结果. 【题目详解】 (1)有两个零点关于的方程有两个相异实根 由,知 有两个零点有两个相异实根. 令,则, 由得:,由得:, 在单调递增,在单调递减 , 又 当时,,当时, 当时, 有两个零点时,实数的取值范围为; (2)当时,, 原命题等价于对一切恒成立 对一切恒成立. 令

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开