温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
河南省
林州
一中
分校
中学
下学
第六
检测
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,设为内一点,且,则与的面积之比为
A. B.
C. D.
2.已知函数,,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )
A. B. C. D.
3.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是( )
A.函数在上单调递增 B.函数的周期是
C.函数的图象关于点对称 D.函数在上最大值是1
4.在中,角的对边分别为,若.则角的大小为( )
A. B. C. D.
5.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )
A.月收入的极差为60 B.7月份的利润最大
C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元
6.已知集合,,若AÜB,则实数的取值范围是( )
A. B. C. D.
7.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为( )
A. B. C. D.
8.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为( )
A. B. C. D.
9.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为( )
A. B.
C.() D.()
10.定义:表示不等式的解集中的整数解之和.若,,,则实数的取值范围是
A. B. C. D.
11.将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:
①它的图象关于直线x=对称;
②它的最小正周期为;
③它的图象关于点(,1)对称;
④它在[]上单调递增.
其中所有正确结论的编号是( )
A.①② B.②③ C.①②④ D.②③④
12.设集合则( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是________.
14.的三个内角A,B,C所对应的边分别为a,b,c,已知,则________.
15.若关于的不等式在上恒成立,则的最大值为__________.
16.已知向量,,若,则________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知,,,.
(1)求的值;
(2)求的值.
18.(12分)已知函数.
(1)若函数在上单调递减,求实数的取值范围;
(2)若,求的最大值.
19.(12分)我国在贵州省平塘县境内修建的500米口径球面射电望远镜(FAST)是目前世界上最大单口径射电望远镜.使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星,脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是-定的,最小小到0.0014秒,最长的也不过11.765735秒.某-天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.
(1)在93颗新发现的脉冲星中,自转周期在2至10秒的大约有多少颗?
(2)根据频率分布直方图,求新发现脉冲星自转周期的平均值.
20.(12分)已知函数(为实常数).
(1)讨论函数在上的单调性;
(2)若存在,使得成立,求实数的取值范围.
21.(12分)已知.
(1)求不等式的解集;
(2)记的最小值为,且正实数满足.证明:.
22.(10分)如图,平面四边形为直角梯形,,,,将绕着翻折到.
(1)为上一点,且,当平面时,求实数的值;
(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、A
【答案解析】
作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.
【题目详解】
如图,作交于点,
则,由题意,,,且,
所以
又,所以,,即,
所以本题答案为A.
【答案点睛】
本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.
2、C
【答案解析】
根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.
【题目详解】
由题意知,则其中,.
又在上有且只有一个最大值,所以,得,即,所以,又,因此.
①当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;
②当时,,此时取可使成立,当时,,所以当或时,都成立,舍去;
③当时,,此时取可使成立,当时,,所以当时,成立;
综上所得的最大值为.
故选:C
【答案点睛】
本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.
3、A
【答案解析】
根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.
【题目详解】
将横坐标缩短到原来的得:
当时,
在上单调递增 在上单调递增,正确;
的最小正周期为: 不是的周期,错误;
当时,,
关于点对称,错误;
当时,
此时没有最大值,错误.
本题正确选项:
【答案点睛】
本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.
4、A
【答案解析】
由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值.
【题目详解】
解:∵,
∴由正弦定理可得:,
∵,
∴,
∵,,
∴,
∴.
故选A.
【答案点睛】
本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
5、D
【答案解析】
直接根据折线图依次判断每个选项得到答案.
【题目详解】
由图可知月收入的极差为,故选项A正确;
1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;
易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.
故选:.
【答案点睛】
本题考查了折线图,意在考查学生的理解能力和应用能力.
6、D
【答案解析】
先化简,再根据,且AÜB求解.
【题目详解】
因为,
又因为,且AÜB,
所以.
故选:D
【答案点睛】
本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.
7、D
【答案解析】
根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.
【题目详解】
如图所示:
因为,所以,
又因为,所以,所以,
所以,所以,
所以,所以,
所以渐近线方程为.
故选:D.
【答案点睛】
本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.
8、D
【答案解析】
求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.
【题目详解】
由题意可得、.
由,得,则,即.
而,所以,所以点.
因为点在椭圆上,则,
整理可得,所以,所以.
即椭圆的离心率为
故选:D.
【答案点睛】
本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.
9、B
【答案解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.
【题目详解】
如图所示:连接,根据垂直平分线知,
故,故轨迹为双曲线,
,,,故,故轨迹方程为.
故选:.
【答案点睛】
本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.
10、D
【答案解析】
由题意得,表示不等式的解集中整数解之和为6.
当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.
当时,,数形结合(如图),由解得.在内有3个整数解,为1,2,3,满足,所以符合题意.
当时,作出函数和的图象,如图所示.
若,即的整数解只有1,2,3.
只需满足,即,解得,所以.
综上,当时,实数的取值范围是.故选D.
11、B
【答案解析】
根据函数图象的平移变换公式求出函数的解析式,再利用正弦函数的对称性、单调区间等相关性质求解即可.
【题目详解】
因为f(x)=sin 3x-cos 3x+1=2sin(3x-)+1,由图象的平移变换公式知,
函数g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期为,故②正确;
令3x+=kπ+,得x=+(k∈Z),所以x=不是对称轴,故①错误;
令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函数g(x)的图象关于点(,1)对称,故③正确;
令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④错误;
故选:B
【答案点睛】
本题考查图象的平移变换和正弦函数的对称性、单调性和最小正周期等性质;考查运算求解能力和整体代换思想;熟练掌握正弦函数的对称性、单调性和最小正周期等相关性质是求解本题的关键;属于中档题、常考题型
12、C
【答案解析】
直接求交集得到答案.
【题目详解】
集合,则.
故选:.
【答案点睛】
本题考查了交集运算,属于简单题.
二、填空题:本题共4小题,每小题5分,共20分。
13、答案不唯一,如
【答案解析】
根据对基本函数的理解可得到满足条件的函数.
【题目详解】
由题意,不妨设,
则在都成立,
但是在是单调递增的,在是单调递减的,
说明原命题是假命题.
所以本题答案为,答案不唯一,符合条件即可.
【答案点睛】
本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.
14、
【答案解析】
利用正弦定理边化角可得,从而可得,进而求解.
【题目详解】
由,
由正弦定理可得,
即,
整理可得,
又因为,所以,
因为,
所以,
故答案为:
【答案点睛】
本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.
15、
【答案解析】
分类讨论,时不合题意;时求导,求出函数的单调区间,得到在上的最小值,利用不等式恒成立转化为函数