温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年度
北京
昌平区
初三
年级
第二次
模拟考试
初中
数学
2023学年度北京昌平区初三年级第二次模拟考试
数学试卷
第一卷 〔机读卷 共32分〕
一、选择题〔共8个小题,每题4分,共32分.〕
在以下各题的四个备选答案中,只有一个是正确的.请将正确答案填入题后的答题表中.
1.4的算术平方根是
A.16 B.2 C.-2 D.±2
2.某人到瓷砖商店去购置一种多边形形状的瓷砖,用来铺设无缝地板,他购置的瓷砖形状不可以是
A.正三角形 B.矩形 C.正六边形 D.正八边形
3.:如图,A、B、C是⊙O上的三个点,∠AOC=100°,那么∠ABC的度数为
A.30° B.45° C.50° D.60°
4.如果反比例函数的图象经过点,那么的值是
A. B. C. D.
5.以下事件中,是必然事件的是
A.我市夏季的平均气温比冬季的平均气温高.
B.掷一枚均匀硬币,正面一定朝上.
C.翻开电视机,正在播放动画片.
D.每周的星期日一定是晴天.
6.3是关于x的方程 x2-3a+1=0 的一个根,那么1-3a的值是
A.-10 B.- 9 C.-3 D.-11
7.在中,、都是锐角,,那么的度数是
A.30° B.45° C.60° D.90°
8.如图,四边形ABCD,A1B1BA, …, A5B5B4A4都是边长为1的小正方形. ∠ACB=,∠A1CB1=,…,∠A5CB5=. 那么的值为
A.1 B.5 C. D.
二、填空题〔共4个小题,每题4分,共16分.〕
9.如图,中,,假设,那么= .
10. 甲、乙两名同班同学的5次数学测验成绩〔总分值120分〕如下:
甲:97,103,95,110,95
乙:90,110,95,115,90
经计算,它们的平均分=100,=100;方差是=33.6, =110,那么这两名同学在这5次数学测验中成绩比拟稳定的是 同学.
11.在下面等式的内填数,内填运算符号,使等式成立〔两个算式中的运算符号不能相同〕: .
12.如图:六边形ABCDEF中,AB平行且等于ED、AF平行且等于CD、BC平行且等于FE,对角线FD⊥BD. FD=4cm,BD=3cm. 那么六边形ABCDEF的面积是 cm2.
三、解答题〔共4个小题,13、16题5分,14题4分,15题6分,共20分.〕
13.计算:
14.化简:
15. :如图,梯形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,BD=,
〔1〕求证:AB=AD;〔2〕求△BCD的面积.
16.有这样一道题:“先化简,再求值:,其中.〞小玲做题时把“〞错抄成了“〞,但她的计算结果也是正确的,请你解释这是怎么回事?
四、解答题〔共3个小题,17题9分,18、19题各5分,共19分.〕
17. 小刚想给小东打 ,但忘了 号码中的一位数字,只记得号码是〔表示忘记的数字〕.
〔1〕假设小刚从至的自然数中随机选取一个数放在位置,求他拨对小东 号码的概率;
〔2〕假设位置的数字是不等式组的整数解,求可能表示的数字.
18.某数学兴趣小组的同学在一次数学活动中,为了测量一棵银杏树AB的高,他们来到与银杏树在同一平地且相距18米的建筑物CD上的C处观察,测得银杏树顶部A的仰角为30°、底部B的俯角为45°. 求银杏树AB的高〔精确到1米〕.〔可供选用的数据:〕.
19. 在正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数S〔次/分〕是这个人年龄n〔岁〕的一次函数. 在正常情况下,年龄15岁和45岁的人在运动时所能承受的最高心跳次数分别为164次/分和114次/分.
(1)根据以上信息,求在正常情况下,S关于n的函数关系式;
〔2〕假设一位63岁的人在跑步,医生在途中给他测得10秒心跳为26次,问:他是否有危险?为什么?
五、解答题〔共2个小题,20题4分,21题6分,共10分.〕
20.将网格中的图形以点O为位似中心放大为原来的2倍,画出一个放大后的图形即可.
21.五一期间,某区一中、二中组织100名优秀教师去某景区旅游,〔其中一中教师多于二中教师〕,景区门票价格规定如下表:
一次性够票人数
1~49人
50~99人
100人以上
每人门票价格
50元
45元
40元
假设两校都以校为单位一次性够票,那么两校一共需付4725元,求两校各有多少名优秀教师参加这次旅游?假设两校联合起来,作为一个团体够票,能节约多少钱?
六、解答题〔此题总分值8分.〕
22.如图,梯形ABCD中,AD∥BC,∠ABC=90°,AD=9,BC=12,AB=,在线段BC上取一点P,连结DP,作射线PE⊥DP,PE与直线AB交于点E.
〔1〕试确定CP=3时,点E的位置;
〔2〕假设设CP=x,BE=y,试写出y关于自变量x的函数关系式;
〔3〕假设在线段BC上找到一点P,使上述作法得到的点E与点A重合,试求出此时的值.
七、解答题〔此题总分值6分.〕
23. 抛物线交x轴于A、B两点,交y轴于点C,抛物线的对称轴为直线x = -1,B(1,0),C(0,-3).
〔1〕求二次函数的解析式;
〔2〕在抛物线对称轴上是否存在一点P,使点P到A、C两点距离之差最大?假设存在,求出点P坐标;假设不存在,请说明理由.
八、解答题〔此题总分值9分.〕
24.△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F .
〔1〕如图1,观察旋转过程,猜测线段AF与BE的数量关系;
〔2〕如图2,假设连接EF,请探索线段BE、EF、FC之间的联系;
〔3〕如图3,假设将“AB=AC,点D是BC的中点〞改为:∠B=30°,AD⊥BC于点D,其余条件不变,探索〔1〕中结论是否成立?假设不成立,请探索关于AF、BE的比值.