温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
河北
衡水
金卷高三
第三次
模拟考试
数学试卷
解析
2023学年高考数学模拟测试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是( )
A. B. C. D.
2.函数f(x)=的图象大致为()
A. B.
C. D.
3.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为( )
A. B. C. D.
4.已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点( )
A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变
B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变
C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变
D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变
5.已知命题:“关于的方程有实根”,若为真命题的充分不必要条件为,则实数的取值范围是( )
A. B. C. D.
6.复数的模为( ).
A. B.1 C.2 D.
7. “角谷猜想”的内容是:对于任意一个大于1的整数,如果为偶数就除以2,如果是奇数,就将其乘3再加1,执行如图所示的程序框图,若输入,则输出的( )
A.6 B.7 C.8 D.9
8.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为
A. B.
C. D.
9.若某几何体的三视图如图所示,则该几何体的表面积为( )
A.240 B.264 C.274 D.282
10.若执行如图所示的程序框图,则输出的值是( )
A. B. C. D.4
11.若复数是纯虚数,则实数的值为( )
A.或 B. C. D.或
12.已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.一个袋中装着标有数字1,2,3,4,5的小球各2个,从中任意摸取3个小球,每个小球被取出的可能性相等,则取出的3个小球中数字最大的为4的概率是__.
14.在平面直角坐标系中,已知点,,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_______.
15.已知不等式组所表示的平面区域为,则区域的外接圆的面积为______.
16.已知,为双曲线的左、右焦点,双曲线的渐近线上存在点满足,则的最大值为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:
试销价格(元)
产品销量 (件)
已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.
(1)试判断谁的计算结果正确?
(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数为的概率.
18.(12分)如图,四棱锥中,四边形是矩形,,,为正三角形,且平面平面,、分别为、的中点.
(1)证明:平面;
(2)求几何体的体积.
19.(12分)在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.
(1)求曲线C的极坐标方程;
(2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程.
20.(12分)设实数满足.
(1)若,求的取值范围;
(2)若,,求证:.
21.(12分)如图,在三棱柱中,已知四边形为矩形,,,,的角平分线交于.
(1)求证:平面平面;
(2)求二面角的余弦值.
22.(10分)已知,,分别是三个内角,,的对边,.
(1)求;
(2)若,,求,.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
由基本音的谐波的定义可得,利用可得,即可判断选项.
【题目详解】
由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,
由,可知若,则必有,
故选:C
【答案点睛】
本题考查三角函数的周期与频率,考查理解分析能力.
2、D
【答案解析】
根据函数为非偶函数可排除两个选项,再根据特殊值可区分剩余两个选项.
【题目详解】
因为f(-x)=≠f(x)知f(x)的图象不关于y轴对称,排除选项B,C.
又f(2)==-<0.排除A,故选D.
【答案点睛】
本题主要考查了函数图象的对称性及特值法区分函数图象,属于中档题.
3、B
【答案解析】
先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.
【题目详解】
如图所示:
由对称性可得:为的中点,且,
所以,
因为,所以,
故而由几何性质可得,即,
故渐近线方程为,
故选B.
【答案点睛】
本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.
4、D
【答案解析】
由函数的图象关于直线对称,得,进而得再利用图像变换求解即可
【题目详解】
由函数的图象关于直线对称,得,即,解得,所以,,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.
故选:D
【答案点睛】
本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题
5、B
【答案解析】
命题p:,为,又为真命题的充分不必要条件为,故
6、D
【答案解析】
利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.
【题目详解】
解:,
复数的模为.
故选:D.
【答案点睛】
本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.
7、B
【答案解析】
模拟程序运行,观察变量值可得结论.
【题目详解】
循环前,循环时:,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足条件,退出循环,输出.
故选:B.
【答案点睛】
本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察变量值,从而得出结论.
8、A
【答案解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.
【题目详解】
画出所表示的区域,易知,
所以的面积为,
满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,
由几何概型的公式可得其概率为,
故选A项.
【答案点睛】
本题考查由约束条件画可行域,求几何概型,属于简单题.
9、B
【答案解析】
将三视图还原成几何体,然后分别求出各个面的面积,得到答案.
【题目详解】
由三视图可得,该几何体的直观图如图所示,
延长交于点,
其中,,,
所以表面积.
故选B项.
【答案点睛】
本题考查三视图还原几何体,求组合体的表面积,属于中档题
10、D
【答案解析】
模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论.
【题目详解】
;如此循环下去,当时,,此时不满足,循环结束,输出的值是4.
故选:D.
【答案点睛】
本题考查程序框图,考查循环结构.解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论.
11、C
【答案解析】
试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.
考点:纯虚数
12、A
【答案解析】
可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可
【题目详解】
可求得直线关于直线的对称直线为,
当时,,,当时,,则当时,,单减,当时,,单增;
当时,,,当,,当时,单减,当时,单增;
根据题意画出函数大致图像,如图:
当与()相切时,得,解得;
当与()相切时,满足,
解得,结合图像可知,即,
故选:A
【答案点睛】
本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
由题,得满足题目要求的情况有,①有一个数字4,另外两个数字从1,2,3里面选和②有两个数字4,另外一个数字从1,2,3里面选,由此即可得到本题答案.
【题目详解】
满足题目要求的情况可以分成2大类:①有一个数字4,另外两个数字从1,2,3里面选,一共有种情况;②有两个数字4,另外一个数字从1,2,3里面选,一共有种情况,又从中任意摸取3个小球,有种情况,所以取出的3个小球中数字最大的为4的概率.
故答案为:
【答案点睛】
本题主要考查古典概型与组合的综合问题,考查学生分析问题和解决问题的能力.
14、
【答案解析】
写出所在直线方程,求出圆心到直线的距离,结合题意可得关于的等式,求解得答案.
【题目详解】
解:直线的方程为,即.
圆的圆心
到直线的距离,
由的面积是的面积的2倍的点,有且仅有一对,
可得点到的距离是点到直线的距离的2倍,
可得过圆的圆心,如图:
由,解得.
故答案为:.
【答案点睛】
本题考查直线和圆的位置关系以及点到直线的距离公式应用,考查数形结合的解题思想方法,属于中档题.
15、
【答案解析】
先作可行域,根据解三角形得外接圆半径,最后根据圆面积公式得结果.
【题目详解】
由题意作出区域,如图中阴影部分所示,
易知,故 ,又,设的外接圆的半径为,则由正弦定理得,即,故所求外接圆的面积为.
【答案点睛】
线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离、可行域面积、可行域外接圆等等,最后结合图形确定目标函数最值取法、值域范围.
16、
【答案解析】
设,由可得,整理得,即点在以为圆心,为半径的圆上.又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1)乙同学正确;(2).
【答案解析】
(1)根据变量且有线性负相关关系判断甲不正确.根据回归直线方程过样本中心