温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
学年
河北省
卷高三
月份
模拟考试
数学试题
解析
2023学年高考数学模拟测试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从八卦中任取两卦,这两卦的六个爻中恰有两个阳爻的概率为( )
A. B. C. D.
2. “一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( )
A.这五年,出口总额之和比进口总额之和大
B.这五年,2015年出口额最少
C.这五年,2019年进口增速最快
D.这五年,出口增速前四年逐年下降
3.若,满足约束条件,则的取值范围为( )
A. B. C. D.
4.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为( )
A.1 B.2
C.3 D.4
5.设i为虚数单位,若复数,则复数z等于( )
A. B. C. D.0
6.在中,,,,点,分别在线段,上,且,,则( ).
A. B. C.4 D.9
7.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于( )
A.6 B.7 C.8 D.9
8.在中,点D是线段BC上任意一点,,,则( )
A. B.-2 C. D.2
9.已知、,,则下列是等式成立的必要不充分条件的是( )
A. B.
C. D.
10.已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是( )
A. B. C. D.
11.已知边长为4的菱形,,为的中点,为平面内一点,若,则( )
A.16 B.14 C.12 D.8
12.已知复数z,则复数z的虚部为( )
A. B. C.i D.i
二、填空题:本题共4小题,每小题5分,共20分。
13.已知函数,若函数有个不同的零点,则的取值范围是___________.
14.若,则__________.
15.已知函数.若在区间上恒成立.则实数的取值范围是__________.
16.在平面直角坐标系中,已知圆及点,设点是圆上的动点,在中,若的角平分线与相交于点,则的取值范围是_______.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)在平面直角坐标系xOy中,已知平行于x轴的动直线l交抛物线C:于点P,点F为C的焦点.圆心不在y轴上的圆M与直线l,PF,x轴都相切,设M的轨迹为曲线E.
(1)求曲线E的方程;
(2)若直线与曲线E相切于点,过Q且垂直于的直线为,直线,分别与y轴相交于点A,当线段AB的长度最小时,求s的值.
18.(12分)已知椭圆的短轴长为,左右焦点分别为,,点是椭圆上位于第一象限的任一点,且当时,.
(1)求椭圆的标准方程;
(2)若椭圆上点与点关于原点对称,过点作垂直于轴,垂足为,连接并延长交于另一点,交轴于点.
(ⅰ)求面积最大值;
(ⅱ)证明:直线与斜率之积为定值.
19.(12分)已知函数,,若存在实数使成立,求实数的取值范围.
20.(12分)已知数列中,a1=1,其前n项和为,且满足.
(1)求数列的通项公式;
(2)记,若数列为递增数列,求λ的取值范围.
21.(12分)某广告商租用了一块如图所示的半圆形封闭区域用于产品展示,该封闭区域由以为圆心的半圆及直径围成.在此区域内原有一个以为直径、为圆心的半圆形展示区,该广告商欲在此基础上,将其改建成一个凸四边形的展示区,其中、分别在半圆与半圆的圆弧上,且与半圆相切于点.已知长为40米,设为.(上述图形均视作在同一平面内)
(1)记四边形的周长为,求的表达式;
(2)要使改建成的展示区的面积最大,求的值.
22.(10分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.
维修次数
2
3
4
5
6
甲设备
5
10
30
5
0
乙设备
0
5
15
15
15
(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;
(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
2023学年模拟测试卷参考答案(含详细解析)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【答案解析】
分类讨论,仅有一个阳爻的有坎、艮、震三卦,从中取两卦;从仅有两个阳爻的有巽、离、兑三卦中取一个,再取没有阳爻的坤卦,计算满足条件的种数,利用古典概型即得解.
【题目详解】
由图可知,仅有一个阳爻的有坎、艮、震三卦,从中取两卦满足条件,其种数是;
仅有两个阳爻的有巽、离、兑三卦,没有阳爻的是坤卦,此时取两卦满足条件的种数是,于是所求的概率.
故选:C
【答案点睛】
本题考查了古典概型的应用,考查了学生综合分析,分类讨论,数学运算的能力,属于基础题.
2、D
【答案解析】
根据统计图中数据的含义进行判断即可.
【题目详解】
对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;
对B项,由统计图可得,2015年出口额最少,则B正确;
对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;
对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;
故选:D
【答案点睛】
本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.
3、B
【答案解析】
根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.
【题目详解】
画出可行域,如图所示:
由图可知,当直线经过点时,取得最小值-5;经过点时,取得最大值5,故.
故选:B
【答案点睛】
本题考查根据线性规划求范围,属于基础题.
4、D
【答案解析】
可以是共4个,选D.
5、B
【答案解析】
根据复数除法的运算法则,即可求解.
【题目详解】
.
故选:B.
【答案点睛】
本题考查复数的代数运算,属于基础题.
6、B
【答案解析】
根据题意,分析可得,由余弦定理求得的值,由可得结果.
【题目详解】
根据题意,,则
在中,又,
则
则
则
则
故选:B
【答案点睛】
此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.
7、A
【答案解析】
先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.
【题目详解】
解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.
解法二:由赋值法易求得,可知当时,取最小值.
故选:A
【答案点睛】
此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.
8、A
【答案解析】
设,用表示出,求出的值即可得出答案.
【题目详解】
设
由
,
,
.
故选:A
【答案点睛】
本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.
9、D
【答案解析】
构造函数,,利用导数分析出这两个函数在区间上均为减函数,由得出,分、、三种情况讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论.
【题目详解】
构造函数,,
则,,
所以,函数、在区间上均为减函数,
当时,则,;当时,,.
由得.
①若,则,即,不合乎题意;
②若,则,则,
此时,,
由于函数在区间上单调递增,函数在区间上单调递增,则,;
③若,则,则,
此时,
由于函数在区间上单调递减,函数在区间上单调递增,则,.
综上所述,.
故选:D.
【答案点睛】
本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.
10、B
【答案解析】
由题意可得,且,故有①,再根据,求得②,由①②可得的最大值,检验的这个值满足条件.
【题目详解】
解:函数,,
为的零点,为图象的对称轴,
,且,、,,即为奇数①.
在,单调,,②.
由①②可得的最大值为1.
当时,由为图象的对称轴,可得,,
故有,,满足为的零点,
同时也满足满足在上单调,
故为的最大值,
故选:B.
【答案点睛】
本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题.
11、B
【答案解析】
取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.
【题目详解】
取中点,连接,
,,即.
,,
,
则.
故选:.
【答案点睛】
本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.
12、B
【答案解析】
利用复数的运算法则、虚部的定义即可得出
【题目详解】
,
则复数z的虚部为.
故选:B.
【答案点睛】
本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、
【答案解析】
作出函数的图象及直线,如下图所示,因为函数有个不同的零点,所以由图象可知,,,所以.
14、
【答案解析】
因为,由二倍角公式得到 ,故得到
.
故答案为.
15、
【答案解析】
首先解不等式,再由在区间上恒成立,即得到不等组,解得即可.
【题目详解】
解:且,即解得,即
因为在区间上恒成立,
解得即
故答案为:
【答案点睛】
本题考查一元二次不等式及函数的综合问题,属于基础题.
16、
【答案解析】
由角平分线成比例定理推理可得,进而设点表示向量构建方程组表示点P坐标,代入圆C方程即可表示动点Q的轨迹方程,再由将所求视为该圆上的点与原点间的距离,所以其最值为圆心到原点的距离加减半径.
【题目详解】
由题可构建如图所示的图形,因为AQ是的角平分线,由角平分线成比例定理可知,所以.
设点,点,即,
则,
所以.
又因为点是圆上的动点,
则,
故点Q的运功轨迹是以为圆心为半径的圆,
又即为该圆上的点与原点间的距离,
因为,所以
故答案为:
【答案点睛】
本题考查与圆有关的距离的最值问题,常常转化到圆心的距离加减半径,还考查了求动点的轨迹方程,属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1