分享
2023学年河北省永年县第二中学高三第三次模拟考试数学试卷(含解析).doc
下载文档
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 学年 河北省 永年县 第二 中学 第三次 模拟考试 数学试卷 解析
2023学年高考数学模拟测试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则( ) A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣12 2.已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( ) A. B. C. D. 3.已知函数,若对任意,都有成立,则实数的取值范围是( ) A. B. C. D. 4.若(是虚数单位),则的值为( ) A.3 B.5 C. D. 5.执行如图所示的程序框图,则输出的值为( ) A. B. C. D. 6.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为( ) A. B. C. D. 7.已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是( ) A. B.9 C.7 D. 8.已知复数满足,其中为虚数单位,则( ). A. B. C. D. 9.如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是( ). A. B. C. D. 10.执行如图所示的程序框图,则输出的的值是( ) A.8 B.32 C.64 D.128 11.2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下: 小明说:“鸿福齐天”是我制作的; 小红说:“国富民强”不是小明制作的,就是我制作的; 小金说:“兴国之路”不是我制作的, 若三人的说法有且仅有一人是正确的,则“鸿福齐天”的制作者是( ) A.小明 B.小红 C.小金 D.小金或小明 12.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为   A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.在直角坐标系中,已知点和点,若点在的平分线上,且,则向量的坐标为___________. 14.如图所示,在直角梯形中,,、分别是、上的点,,且(如图①).将四边形沿折起,连接、、(如图②).在折起的过程中,则下列表述: ①平面; ②四点、、、可能共面; ③若,则平面平面; ④平面与平面可能垂直.其中正确的是__________. 15.如图所示,在正三棱柱中,是的中点,, 则异面直线与所成的角为____. 16.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。 17.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为. (1)求的直角坐标方程和的直角坐标; (2)设与交于,两点,线段的中点为,求. 18.(12分)设数列是等差数列,其前项和为,且,. (1)求数列的通项公式; (2)证明:. 19.(12分)函数,且恒成立. (1)求实数的集合; (2)当时,判断图象与图象的交点个数,并证明. (参考数据:) 20.(12分)已知数列满足:对一切成立. (1)求数列的通项公式; (2)求数列的前项和. 21.(12分)已知函数,. (1)若不等式对恒成立,求的最小值; (2)证明:. (3)设方程的实根为.令若存在,,,使得,证明:. 22.(10分)已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点. (1)求椭圆方程; (2)若直线与椭圆交于另一点,且,求点的坐标. 2023学年模拟测试卷参考答案(含详细解析) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1、D 【答案解析】 分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果. 【题目详解】 设, 联立 则, 因为直线经过C的焦点, 所以. 同理可得, 所以 故选:D. 【答案点睛】 本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。 2、C 【答案解析】 求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得 【题目详解】 抛物线焦点为,令,,解得,不妨设,则直线的方程为,由,解得,所以. 故选:C 【答案点睛】 本小题主要考查抛物线的弦长的求法,属于基础题. 3、D 【答案解析】 先将所求问题转化为对任意恒成立,即得图象恒在函数 图象的上方,再利用数形结合即可解决. 【题目详解】 由得,由题意函数得图象恒在函数图象的上方, 作出函数的图象如图所示 过原点作函数的切线,设切点为,则,解得,所以切 线斜率为,所以,解得. 故选:D. 【答案点睛】 本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题. 4、D 【答案解析】 直接利用复数的模的求法的运算法则求解即可. 【题目详解】 (是虚数单位) 可得 解得 本题正确选项: 【答案点睛】 本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力. 5、B 【答案解析】 列出每一次循环,直到计数变量满足退出循环. 【题目详解】 第一次循环:;第二次循环:; 第三次循环:,退出循环,输出的为. 故选:B. 【答案点睛】 本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题. 6、B 【答案解析】 甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得. 【题目详解】 由题意甲、乙租车费用为3元的概率分别是, ∴甲、乙两人所扣租车费用相同的概率为 . 故选:B. 【答案点睛】 本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础. 7、B 【答案解析】 试题分析:圆的圆心,半径为,圆的圆心,半径是.要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,,故的最大值为,故选B. 考点:圆与圆的位置关系及其判定. 【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值. 8、A 【答案解析】 先化简求出,即可求得答案. 【题目详解】 因为, 所以 所以 故选:A 【答案点睛】 此题考查复数的基本运算,注意计算的准确度,属于简单题目. 9、C 【答案解析】 易得,,又,平方计算即可得到答案. 【题目详解】 设双曲线C的左焦点为E,易得为平行四边形, 所以,又, 故,,, 所以,即, 故离心率为. 故选:C. 【答案点睛】 本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题. 10、C 【答案解析】 根据给定的程序框图,逐次计算,结合判断条件,即可求解. 【题目详解】 由题意,执行上述程序框图,可得 第1次循环,满足判断条件,; 第2次循环,满足判断条件,; 第3次循环,满足判断条件,; 第4次循环,满足判断条件,; 不满足判断条件,输出. 故选:C. 【答案点睛】 本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题. 11、B 【答案解析】 将三个人制作的所有情况列举出来,再一一论证. 【题目详解】 依题意,三个人制作的所有情况如下所示: 1 2 3 4 5 6 鸿福齐天 小明 小明 小红 小红 小金 小金 国富民强 小红 小金 小金 小明 小红 小明 兴国之路 小金 小红 小明 小金 小明 小红 若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红, 故选:B. 【答案点睛】 本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题. 12、D 【答案解析】 设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值. 【题目详解】 设,,联立,得 则, 则 由,得 设,则 , 则点到直线的距离 从而 . 令 当时,;当时, 故,即的最小值为 本题正确选项: 【答案点睛】 本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值. 二、填空题:本题共4小题,每小题5分,共20分。 13、 【答案解析】 点在的平分线可知与向量共线,利用线性运算求解即可. 【题目详解】 因为点在的平线上, 所以存在使, 而, 可解得, 所以, 故答案为: 【答案点睛】 本题主要考查了向量的线性运算,利用向量的坐标求向量的模,属于中档题. 14、①③ 【答案解析】 连接、交于点,取的中点,证明四边形为平行四边形,可判断命题①的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题②的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题③的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题④的正误.综合可得出结论. 【题目详解】 对于命题①,连接、交于点,取的中点、,连接、,如下图所示: 则且,四边形是矩形,且,为的中点, 为的中点,且,且, 四边形为平行四边形,,即, 平面,平面,平面,命题①正确; 对于命题②,,平面,平面,平面, 若四点、、、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得, 则,但四边形为梯形且、为两腰,与相交,矛盾. 所以,命题②错误; 对于命题③,连接、,设,则, 在中,,,则为等腰直角三角形, 且,,,且, 由余弦定理得,, ,又,,平面, 平面,, ,、为平面内的两条相交直线,所以,平面, 平面,平面平面,命题③正确; 对于命题④,假设平面与平面垂直,过点在平面内作, 平面平面,平面平面,,平面, 平面, 平面,, ,,,,, 又,平面,平面,. ,平面,平面,. ,,显然与不垂直,命题④错误.

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开