温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
核磁共振
图像
分割
方法
研究
东北师范大学硕士学位论文核磁共振脑图像分割方法的研究姓名:王建中申请学位级别:硕士专业:计算机应用技术指导教师:孔俊;吕英华20070501摘要在医学图像处理与分析领域中,医学图像的分割一直是经典难题之一。在本文中,提出了三种基于不同方法的M R I 脑图像分割技术。本文中的第一种脑组织图像分割算法综合运用了分水岭算法,模糊聚类算法,统计学中的最小协方差行列式判决算法和k 最近邻算法提出了一种基于二次分割的方法实现对核磁共振(M R J)脑图像的分割。首先,采用形态学中的分水岭算法对图像进行初始分割。但是通常,传统分水岭算法在对灰度尺度纹理图像,尤其是组织图像分割中,常常出现过度分割的现象。为了解决分水岭算法的过度分割问题,本文采用基于区域的模糊c 均值(F C M)聚类算法实现对过度分割区域的合并。然而,分水岭算法在存在过度分割现象的同时,仍存在一些分割不完全的现象,即在一些组织的过渡区域,分水岭算法并没有把不同的组织完全的分割开,因此,本文采用最小协方差行列式判决来确定需要再次分割的区域并且利用k 最近邻算法对这些区域进行二次分割。本算法将多种方法巧妙地相互结合,实现了对脑组织磁共振图像的分割,并通过对大量模拟数据和真实数据的分割实验证明所提出此方法的有效性和精确性。本文提出的第二种分割算法,主要是将模糊技术和K o h o n e n 竞争学习算法相结合,从而实现对M R I 脑图像的分割。K o h o n e n 竞争学习算法及自组织特征映射已经被广泛的应用在医学图像分割中,然而,在脑组织图像中,不同组织的过渡区域经常存在灰度交叠的现象。因此,本算法将模糊技术同传统的K o h o n e n 竞争学习算法结合起来克服这个问题。为了加强算法对噪声的鲁棒性,本算法用一个由高斯核引出的方法来计算输入向量和权值之间的距离,从而提高了算法的抗噪和抗干扰的能力。通过对模拟数据和真实数据的分割实验,可以证明本方法确实要优于传统的模糊聚类算法和K o h o n e n 竞争学习算法。本文提出的第三种脑组织图像分割算法,是一种改进的模糊c 均值聚类算法。在医学图像中,往往存在着大量噪声,这些噪声会严重影响分割结果的准确性。本方法综合利用像素邻域和非邻域的信息,来对图像中的噪声进行抑制,通过一种新颖的距离计算方法替换传统模糊c 均值算法中的欧式距离度量,来克服噪声对于分割的影响。通过大量的实验以及和其它算法的比较,证明了本算法的有效性和正确性。关键词:分水岭算法,模糊c 均值,K o h o n e n 竞争学习,非局部均值,二次分割A b s t r a c tT h r e ed i f f e r e n tm e t h o d sf o rM I Ub r a i ni m a g es e g m e n t a t i o na l ep r o p o s e di nt h i sp a p e r T h ef i r s ts e g m e n t a t i o nm e t h o di nt h i sp a p e ri sb a s e do l lw a t e r s h e da l g o r i t h m,f u z z yc l u s t e r i n ga l g o r i t h m,M i n i m u mC o v a r i a n c eD e t e r m i n a n t(M C D)e s t i m a t o ra n dk-N e a r e s tN e i g h b o r c l a s s i f i e r F i r s t l y,w a t e r s h e da l g o r i t h mi sa p p l i e dt ob r a i nt i s s u e sa sa l li n i t i a ls e g m e n t i n gm e t h o d N o r m a l l y,r e s u l to fc l a s s i c a lw a t e r s h e da l g o r i t h mo ng r a y-s c a l et e x t u r e di m a g e ss u c ha st i s s u ei m a g e si so v e r-s e g m e n t a t i o n T h ef o l l o w i n gp r o c e d u r ei sam 咄gp r o c e s sf o rt h eo v e r-s e g m e n t a t i o nr e g i o n su s i n gF u z z yC-M e a n sa l g o r i t h m B u tt h e r ea r es t i l l$o m er e g i o n sw h i c ha r en o td i v i d e dc o m p l e t e l yd u et ot h el o wc o n t r a s ti nt h e m W ee x p l o i t eam e t h o db a s eo nM i n i m u mC o v a r i a n c eD e t e r m i n a n t(M C D)e s t i m a t o rt od e t e c tt h er e g i o n sn e e d e ds e g m e n t a t i o na g a i n,a n dt h e np a r t i t i o nt h e mb yas u p e r v i s e dk-N e a r e s tN e i g h b o r(k N N)c l a s s i f i e r T h i si n t e g r a t e da p p r o a c hy i e l d sar o b u s ta n dp r e c i s es e g m e n t a t i o n T h ee f f i c a c yo ft h ep r o p o s e da l g o r i t h mi sv a l i d a t e du s i n ge x t e n s i v ee x p e r i m e n t s K o h o n e n sc o m p e t i t i v el e a r n i n gn e t w o r ki sat w o-l a y e rf e e d f o r w a r dn e t w o r k,a n dh a sb e e nu s e di nb r a i nM R Ii m a g es e g m e n t a t i o n H o w e v e r,m o s tb r a i nM I ui m a g e sa l w a y sp r e s e n to v e r l a p p i n gg r a y-s c a l ei n t e n s i t i e sf o rd i f f e r e n tt i s s u e s I nt h es e c o n ds e g m e n t a t i o nm e t h o do f t h i sp a p e r,f u z z ym e t h o d sa r ei n t e g r a t e dw i t hK o h o n e n sc o m p e t i t i v ea l g o r i t h mt oo v e r c o m et h i sp r o b l e m(F _ K C L)M o r e o v e r,i no r d e rt oe n h a n c i n gt h er o b u s t n e s st on o i s ea n do u t l i e r s,ak e r n e li n d u c e dm e t h o di se x p l o i t e di no u rs t u d yt om c a s u r et h ed i s t a n c eb e t w e e nt h ei n p u tv e c t o ra n dt h ew e i g h t s T h ee f f i c a c yo fo u ra p p r o a c hi sv a l i d a t e db ye x t e n s i v ee x p e r i m e n t su s i n gb o t hs i m u l a t e da n dr e a lM R Ii m a g e s T h et h i r da l g o r i t h mi nt h i sP a p e ri sam o d i f i e dF C Ma l g o r i t h mf o rM I ui m a g es e g m e n t a t i o n M R Ji m a g e sa l w a y sc o n t a i nas i g n i f i c a n ta n a o t m to fn o i s ew h i c hm a k e sa c c u r a t es e g m e n t a t i o nd i f f i c u l t T h ep r o p o s e dm e t h o di n c o r p o r a t e sb o t ht h el o c a ls p a t i a lc o n t e x ta n dt h en o n-l o c a li n f o r m a t i o ni n t ot h ec o n v e n t i o n a lF u z z yc-m e 蝈t n s(F C M)c l u s t e ra l g o r i t h mu s i n gan o v e ld i s s i m i l a r i t yi n d e xi np l a c eo ft h eu s u a ld i s t a n c em e t r i c T h ee f f i c a c yo ft h ep r o p o s e da l g o r i t h mi sd e m o n s t r a t e db ye x t e n s i v es e g m e n t a t i o ne x p e r i m e n t su s i n gb o t hs i m u l a t e da n dr e a lM Ri m a g e sa n db yc o m p a r i s o nw i t ho t h e rp u b l i s h e da l g o r i t h m s K e yw o r d s:w a t e r s h e da l g o r i t h r n,F C Mc l u s t e r i n g,K o h o n e nc o m p e t i t i v el e a r n i n g,N o n-L o c a lM e a n s,r e-s e g m e n t a t i o n独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果。也不包含为获得东北师范大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均己在论文中作了明确的