分享
2023年幂函数教学设计.docx
下载文档

ID:1139254

大小:19.11KB

页数:4页

格式:DOCX

时间:2023-04-18

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 函数 教学 设计
幂函数教学设计 幂函数教学设计 克山一中吴雅杰 一、设计构思 1、设计理念 注重开展学生的创新意识。学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造〞过程。我们应积极创设条件,让学生体验数学发现和创造的历程,开展他们的创新意识。 注重提高学生数学思维能力。课堂教学是促进学生数学思维能力开展的主阵地。问题解决是培养学生思维能力的主要途径。所设计的问题应有利于学生主动地进行观察、实验、猜想、验证、推理与交流等教学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学〞的余味,学生学习的积极性与主动性在教学中便自发生成。本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。 注重学生多层次的开展。在问题解决的探究过程中应表达“以人为本〞,充分表达“人人学有价值的数学,人人都能获得必需的数学〞,“不同的人在数学上得到不同的开展〞的教学理念。有意义的数学学习必须建立在学生的主观愿望和知识经验根底之上,而学生的根底知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到开展。 注重信息技术与数学课程的整合。高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。 另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。 2、教材分析 幂函数是江苏教育出版社普通高中课程标准实验教科书数学〔必修1〕第二章第四节的内容。该教学内容在人教版试验修订本〔必修〕中已被删去。标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。故在教学过程及后继学习过程中,应能够让学生体会其实际应用。标准将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已经学习了y=x、y=x2、y=x-1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识。现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的根本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了根本思路和方法。因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外应让学生了解利用信息技术来探索函数图象及性质是一个重要途径。该内容安排一课时。 3、教学目标确实定 鉴于上述对教材的分析和新课程的理念确定如下教学目标: ⑴掌握幂函数的形式特征,掌握具体幂函数的图象和性质。 ⑵能应用幂函数的图象和性质解决有关简单问题。 ⑶加深学生对研究函数性质的根本方法和流程的经验。 ⑷培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。 ⑸渗透辨证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题、解决问题的能力。 4、教学方法和教具的选择 基于对课程理念的理解和对教材的分析,运用问题情境可以使学生较快的进入数学知识情景,使学生对数学知识结构作主动性的扩展,通过问题的导引,学生对数学问题探究,进行数学建构,并能运用数学知识解决问题,让学生有运用数学成功的体验。本课采用教师在学生原有的知识经验和方法上,引导学生提出问题、解决问题的教学方法,表达以学生为主体,教师主导作用的教学思想。 教具:多媒体。制作多媒体课件以提高教学效率。 5、教学重点和难点 重点是从具体幂函数归纳认识幂函数的一些性质并作简单应用。 难点是引导学生概括出幂函数性质。 6、教学流程 考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和根本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的根本内容和方法为暗线,教学过程中同时展开。 明线: ⑴本节课开始时要注意用相关熟悉例子引入新课。 ⑵画函数图象时,如果学生已能够运用计算器或相关计算机软件作图,可以让学生自己操作,以提高学生探索问题的兴趣和能力,并提高教学效率。 ⑶由于课程标准对幂函数的研究范围有相对限制,故第11个问题要求较高,建议视具体情况选择教学。 ⑷本设计相关课件采用PowerPoint演示文稿,其中局部使用超级链接至几何画板〔4.06版本〕进行演示。 附图1 附图2 幂函数在第一象限内的变化规律演示

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开