分享
2023年监控系统设备雷电浪涌防护.doc
下载文档

ID:1137982

大小:52KB

页数:13页

格式:DOC

时间:2023-04-18

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 监控 系统 设备 雷电 浪涌 防护
监控系统设备雷电浪涌防护 说 明 书   一、概  述 众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于以下三种层次:①设备损坏,人员伤亡;②设备或元器件寿命降低;③传输或储存的信号、数据〔模拟或数字〕受到干扰或丧失,甚至使电子设备产生误动作而暂时瘫痪或整个系统停顿。目前,世界上各种建筑、设施大多数仍在使用传统的避雷针防雷。用避雷针防止直接雷击实践证明是经济和有效的。但是,随着现代电子技术的不断开展,大量精密电子设备的使用和联网,避雷针对这些电子设备的保护却显得无能为力。避雷针不能阻止感应雷击过电压、操作过电压以及雷电波入侵过电压,而这类过电压却是破坏大量电子设备的罪魁祸首。每年各种通讯控制系统或网络因雷击而受破坏的事例屡见不鲜,其中安防监控系统因受到雷击引起设备损坏,自动化监控失灵的事件也常有发生。安防监控子系统中局部前端摄像机设计为室外安装方式,对于雷雨多发地区必须设计安装防雷电系统。   二、雷电设计说明 系统防雷方案包括外部防雷和内部防雷两个方面: 外部防雷包括避雷针、避雷带、引下线、接地极等等,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针、避雷带、引下线等,泄放入大地。 内部防雷系统是为保护建筑物内部的设备以及人员的安全而设置的。通过在需要保护设备的前端安装适宜的避雷器,使设备、线路与大地形成一个有条件的等电位体。将可能进入的雷电流阻拦在外,将因雷击而使内部设施所感应到的雷电流得以安全泄放入地,确保后接设备的安全。 避雷带、引下线〔建筑物钢筋〕和接地等构成的外部防雷系统,主要是为了保护建筑物本体免受雷击引起的火灾事故及人身安全事故,而内部防雷系统那么是防止感应雷和其他形式的过电压侵入设备造成损坏,这是外部防雷系统无法保证的。 雷电对电气设备的影响,主要由以下四个方面造成:①直击雷;②传导雷; ③感应雷;④开关过电压。 直击雷:雷电直接击中建筑物,雷电的不到50%的能量将会从引下线等外部避雷设施泄放到大地,其中接近40%的能量将通过建筑物的供电系统分流,其中5%左右的能量通过建筑物的通信网络线缆分流,其余的雷击能量通过建筑物的其他金属管道、缆线分流。这里的能量分配比例会随着建筑物内的布线状况和管线结构而变化。直击雷波形为10/350us。 传导雷〔雷电波侵入〕:在更大的范围内〔几公里甚至几十公里〕,雷电击中电力或信息通讯线路,然后沿着传输线路侵入设备。其中地电位还击也是传导雷中的一种:雷电击中附近建筑物或附近其他物体、地面,导致地电压升高,并在周围形成巨大的跨步电压。雷电可能通过接地系统或建筑物间的线路入侵雷电延建筑物内部设备形成地电位还击。               感应雷〔雷电波感应〕:在周围1000公尺左右范围内〔有资料为 500公尺或 1500公尺,距离应随着雷击大小和屏蔽措施而变化〕。发生雷击时,LEMP 在上述有效范围内,在所有的导体上产生足够强度的感应浪涌。因此分布于建筑物内外的各种电力、信息线路将会感应雷电而对设备造成危害。 随着现代高科技的开展,精密仪器,通讯设备,数据网络的应用越来越广泛,因而感应雷造成的雷击事故也越来越多,除直接造成了巨大的经济损失外,因重要设备损坏使系统网络陷入瘫痪后造成间接的损失更是惊人。   三、雷电防护设计思想 〔1〕直击雷的外部防护措施 虽然有不少专家学者在努力的研究有效的防止直击雷的方法,但直到今天我们还是无法阻止雷击的发生。实际上现在公认的防直击雷的方法仍然是200年前富兰克林先生创造的避雷针。 A. 接闪器 避雷针及其变形产品避雷线、避雷带、避雷网等统称为接闪器。历史上对接闪器防雷原理的认识产生过误解。当时认为:避雷针防雷是因为其尖端放电综合了雷云电荷从而防止了雷击发生,所以当时要求避雷针顶部一定要是尖端,以加强放电能力。后来的研究说明:一定高度的金属导体会使大气电场畸变,这样雷云就容易向该导体放电,并且能量越大的雷就越易被金属导体吸引。这样接闪器的防雷是因为将雷电引向自身而防止了被保护物被雷电击中。现在认为任何良好接地的导体都可能成为有效的接闪器,而与它的形状没有什么关系。 为了降低建筑被雷击的概率,宜优先采用避雷网、作为建筑物的接闪器,如果屋面有天线等通信设施可在局部加装避雷针保护,这样接闪器的高度不会太高,不会增大建筑的雷击概率。避雷网的网格尺寸应不大于10mX10m,避雷针应与避雷网可靠连接。 B. 引下线 引下线的作用是将接闪器接闪的雷电流安全的导引入地,引下线不得少于两根,并应沿建筑物四周对称均匀的布置,引下线的间距不大于18米,引下线接长必须采用焊接,引下线应与各层均压环焊接,引下线采用10毫米的圆钢或相同面积的扁钢。对于框架结构的建筑物,引下线应利用建筑物内的钢筋作为防雷引下线。 采用多根引下线不但提高了防雷装置的可靠性,更重要的是多根引下线的分流作用可大大降低每根引下线的沿线压降,减少侧击的危险。其目的是为了让雷 电流均匀入地,便于地网散流,以均衡地电位。同时,均匀对称布置可使引下线泻流时产生的强电磁场在引下线所包围的电信建筑物内相互抵消,减小雷击感应的危险。 C. 接地体 接地体是指埋在土壤中起散流作用的导体,接地体应采用:         钢管     直径大于50毫米,壁厚大于3.5毫米;         角钢     不小于50×50×5毫米         扁钢     不小于40×4毫米。 应将多根接地体连接成地网,地网的布置应优先采用环型地网,引下线应连接在环型地网的四周,这样有利于雷电流的散流和内部电位的均衡。垂直接地体一般长为1.5-2.5米,埋深0.8米,地极间隔5米,水平接地体应埋深1米,其向建筑物外引出的长度一般不大于50米。框架结构的建筑应采用建筑物根底钢筋做接地体。 〔2〕直击雷电流在电源系统的分配: 根据GB50057-94的标准对直击雷电流分类: 第一类  200KA   10/350us 第二类  150KA   10/350us 第三类  100KA   10/350us   如以下图:   一个能量为200KA的直击雷,由整个系统的电源、管线、地网、通信网络线来分担。以一栋建筑的防雷来讲,电源局部承当其中近45%〔100KA〕,以三相四线为例,每线承当大约有25KA(10/350us)的雷电流。通信站根本无管道系统,不计。地网和通信线路承当剩余55%的雷电流。由此可见,电源系统对直击雷的防护非常关键。 由此可见,直击雷的内部防护措施应选用10/350us冲击雷电流的开关型SPD产品。另外,对于个别架空线引入的传导雷,也应采用上述一级防护措施。 〔3〕感应雷的防护 前面已提到感应雷是因为直击雷放电而感应到附近的金属导体中的,其实感应雷可通过两种不同的感应方式侵入导体,一是静电感应:在雷云中的电荷积聚时,附近的导体也会感应上相反的电荷,当雷击放电时,雷云中的电荷迅速释放,而导体中原来被雷云电场束缚住的静电也会沿导体流动寻找释放通道,就在电路中形成电脉冲。二是电磁感应:在雷云放电时,迅速变化的雷电流在其周围产生强大的瞬变电磁场,在其附近的导体中产生很高的感生电动势。研究说明:静电感应方式引起的浪涌数倍于电磁感应引起的浪涌。 感应雷可以通过电力电缆、视频线、网络线和天馈线等侵入,由于电力电缆的距离长且对雷电波的传输损耗小,所以由电源侵入的感应雷造成的危害十分突出,按原邮电部的统计约占了雷击事故的80%。因此,对建筑物内的系统设备进行感应雷防护时,电源是重点。 感应雷还可以通过空间感应侵入通信站的内部线路,虽然经过建筑物和机壳的屏蔽衰减后其能量大为减小,但站内许多电信设备的抗过压能力也很弱,如果处理不当也可能造成设备故障。 〔4〕接地聚集线的布置 接地聚集线〔汇流排〕应布置在靠近避雷器的地方,以使避雷器的接地连接线最短,各楼层的分聚集线应直接与楼底的总聚集线相连,这样能保证实现单点接地方式,当楼层高于30米时,高于30米局部的分聚集线应与建筑物均压环相连,以防止侧击。 近年来IEC的研究认为:接地聚集线的多重互连是有益的,但部标尚未采纳。 〔5〕等电位连接 各种系统的防雷要求种类很多,但其防雷思想是一致的,就是努力实现等电位。绝对的等电位只是一个理想,实际中只能尽量逼近,目前是综合采用分流、屏蔽、箝位、接地等方法来近似实现等电位。〔见图1〕   〔6〕电源避雷器的选择和应用原那么 考虑到电源负荷电流容量较大,为了安全起见及使用和维护方便,数据通信电源系统的多级防雷,原那么上均选用串联型电源避雷器。 电源避雷器的保护模式有共模和差模两方式。共模保护指相线-地线〔L-PE〕、零线-地线〔N-PE〕间的保护;差模保护指相线-零线〔L-N〕、相线-相线〔L-L〕间的保护。对于低压侧第二、三、四级保护,除选择共模的保护方式外,还应尽量选择包括差模在内的保护。 残压特性是电源避雷器的最重要特性,残压越低,保护效果就越好。但考虑到我国电网电压普遍不稳定、波动范围大的实际情况,在尽量选择残压较低的电源避雷器的同时。还必须考虑避雷器有足够高的最大连续工作电压。如果最大连续工作电压偏低,那么易造成避雷器自毁。 电源系统低压侧有一、二、三级不同的保护级别,应根据保护级别的不同,选择适宜标称放电电流〔额定通流容量〕和电压保护水平的电源避雷器,并保证避雷器有足够的耐雷电冲击能力。原那么上,每一级的交流电源之间连接导线超过25m以上,都应做该级相应的保护。 电源低压侧保护用的电源避雷器,应该选择有失效警告指示、并能提供遥测端口功能的电源避雷器,以方便监控、管理和日后维护。 电源避雷器必须具有阻燃功能,在失效、或自毁时不能起火。 电源避雷器必须具有失效别离装置,在失效时,能自动与电源系统断开,而不影响通信电源系统的正常供电。 电源避雷器的连接端子,必须至少能适应25mm2的导线连接。安装避雷器时的引线应采用截面积不小于25mm2的多股铜导线,建议使用 25mm2的多股铜导线,并尽可能短〔引线长度不宜超过1.0m〕。当引线长度超过1.0m时,应加大引线的截面积;引线应紧凑并排或绑扎布放。 电源避雷器的接地:接地线应使用不小于25~35mm2的多股铜导线,并尽可能就近与交流保护地汇流排、或总汇流排、接地网直接可靠连接。 另外根据GB50057-94 关于雷击概率计算中环境参数的选择〔见附件2〕,根据YD/T5098-2023条文说明中2.0.4款10/350 和 8/20 us波能量换算的公式: Q(10/350us)≌20Q(8/20us) 由于10/350us模拟雷电电流冲击波的能量远大于8/20us模拟雷电电流冲击波的能量,因此一般需要使用电压开关型SPD(如放电间隙、放电管)才能承受10/350us模拟雷电电流冲击波,而由MOV和SAD组成的SPD一般所承受的标称放电电流是8/20us模拟雷电电流冲击波。 在本方案中,两级防雷器选择我公司的串联式火花间隙防雷器FLX系列。 〔7〕电源避雷器的安装要求 在安装电源避雷器时,要求避雷器的接地端与接地网之间的连接距离尽可能越近越好。如果避雷器接地线拉得过长,将导致避雷器上的限制电压〔被保护线与地之间的残压〕过高,可能使避雷器难以起到应有的保护作用。 因此,避雷器的正确安装以及接地系统的良好与否,将直接关系到避雷器防雷的效果和质量。避雷器安装的根本要求如下: 电源避雷器的连接引线,必须有足够粗,并尽可能短; 引线应采用截面积不小于25mm2的多股铜导线; 如果引线长度超过1.0m时,应加大引线的截面积; 引线应紧凑并排或帮扎布放; 电源避雷器的接地线应为不小于25~35m2多股铜导线,并尽可能就近可靠入地。   四、雷电防护设计依据 (1) 建筑物防雷设计标准 GB50057-94 (2) 电子计算机机房设计标准 GB501

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开