分享
2023年大数据背景下统计学专业“数据挖掘”课程的教学探讨.docx
下载文档

ID:1129201

大小:20.54KB

页数:3页

格式:DOCX

时间:2023-04-18

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 数据 背景 统计学 专业 挖掘 课程 教学 探讨
优质文档 大数据背景下统计学专业“数据挖掘〞课程的教学探讨 范彩云 摘 要:互联网技术、物联网技术、云计算技术的蓬勃开展,造就了一个崭新的大数据时代,这些变化对统计学专业人才培养模式的变革起到了助推器的作用,而数据挖掘作为拓展和提升大数据分析方法与思路的应用型课程,被广泛纳入统计学本科专业人才培养方案。本文基于数据挖掘课程的特点,结合实际教学经验,对统计学本科专业开设数据挖掘课程进行教学探讨,以期到达更好的教学效果。 关键词:统计学专业;数据挖掘;大数据;教学 一、引言 通常人们总结大数据有“4V〞的特點:Volume(体量大),Variety(多样性),Velocity(速度快)和Value(价值密度低)。从这样大量、多样化的数据中挖掘和发现内在的价值,是这个时代带给我们的机遇与挑战,同时对数据分析技术的要求也相应提高。传统教学模式并不能适应和满足学生了解数据处理和分析最新技术与方法的迫切需要。对于常常和数据打交道的统计学专业的学生来说,更是如此。 二、课程教学探讨 针对统计学本科专业的学生而言,“数据挖掘〞课程一般在他们三年级或者四年级所开设,他们在前期已经学习完统计学、应用回归分析、多元统计分析、时间序列分析等课程,所以在“数据挖掘〞课程的教学内容选择上要有所取舍,同时把握好难度。不能把“数据挖掘〞课程涵盖了的所有内容不加选择地要求学生全部掌握, 对学生来说是不太现实的,需要为统计学专业本科生 “个性化定制〞教学内容。 (1)“数据挖掘〞课程的教学应该偏重于应用,更注重培养学生解决问题的能力。因此 ,教学目标应该是:使学生树立数据挖掘的思维体系,掌握数据挖掘的根本方法,提高学生的实际动手能力,为在大数据时代,进一步学习各种数据处理和定量分析工具打下必要的根底。按照这个目标,教学内容应以数据挖掘技术的根本原理讲解为主,让学生了解和掌握各种技术和方法的来龙去脉、功能及优缺点 ;以算法讲解为辅,由于有 R语言、python等软件, 学生了解典型的算法,能用软件把算法实现,对软件的计算结果熟练解读, 对各种算法的改进和深入研究那么不作要求,有兴趣的同学可以自行课下探讨。 (2)对于已经学过的内容不再详细讲解,而是侧重介绍它们在数据挖掘中的功能及综合应用。在新知识的讲解过程中,注意和已学过知识的融汇贯穿,既复习稳固了原来学过的知识,同时也无形中降低了新知识的难度。比方,在数据挖掘模型评估中,把混淆矩阵、ROC曲线、误差平方和等知识点就能和之前学过的内容有机联系起来。 (3)结合现实数据,让学生由“被动接收〞式的学习变为“主动探究〞型的学习。在讲解每种方法和技术之后, 增加一个或几个案例, 以加强学生对知识的理解。除了充分利用已有的国内外数据资源,还可以鼓励学生去搜集自己感兴趣的或者国家及社会群众关注的问题进行研究,提升学生学习的成就感。 (4)充分考虑前述提到的三点,课程内容方案安排见表1。 (5)课程的考核方式既要一定的理论性,又不能失掉实践应用性,所以需要结合平时课堂表现、平时实验工程完成情况和期末考试来综合评定成绩。采取期末闭卷理论考试占50%,平时实验工程完成占40%,课堂表现占10%,这样可以全方位的评价学生的表现。 三、教学效果评估 经过几轮的教学实践后,取得了如下的教学效果: (1)学生对课程的兴趣度在提升,课下也会不停地去思考数据挖掘有关的方法和技巧,发现问题后会一起交流与讨论。 (2)在大学生创新创业工程或者数据分析的有关竞赛中,选用数据挖掘方法的人数也越来越多,局部同学的成果还能在期刊上正式发表,有的同学还能在竞赛中取得优秀的成绩。 (3)统计学专业本科生毕业论文的选题中利用数据挖掘有关方法来完成的论文越来越多,论文的完成质量也在不断提高。 (4)本科毕业生的就业岗位中从事数据挖掘工作的人数有所提高,说明满足企业需求技能的人数在增加。继续深造的毕业生选择数据挖掘研究方向的人数也在逐渐增多,说明学生的学习兴趣得以激发。 教学实践结果说明,通过数据挖掘课程的学习,可以让学生在掌握理论知识的根底上,进一步提升分析问题和解决实际问题的能力。 四、结束语 数据挖掘是一门新型的多学科交叉的学科,知识内容体系不断地开展和更新。目前在大数据背景下,开设数据挖掘课程有其现实意义,同时对教学是一个挑战,需要在教学过程中不断探索和研究,引领学生发现数据挖掘方法与传统统计分析方法的区别和共同之处。因此,在教学过程中针对统计学专业的学生,尤其是本科生现有的知识水平,认真安排教学内容,科学设计教学方法,从而激发学生的学习兴趣,提高课堂教学效率,增强学生实践能力。 [参考文献] [1]陈欣, 王月虎. 大数据背景下数据挖掘课程的教学方法探讨[J]. 文教资料, 2023(23):175-176. [2]李国杰,程学旗.大数据研究:未来科技及经济社会开展的重大战略领域[J].中国科学院院刊,2023,27(6):647-657. [3]朱恒民.专业学生开设数据挖掘课程的教学探索[J].教学研究,2023,36(4):82-84. [4]张艳.大数据背景下的数据挖掘课程教学新思考[J]. 计算机时代,2023(4):59-61. [5]李海林.大数据环境下的数据挖掘课程教学探索[J]. 计算机时代,2023(2):54-55. [6]刘云霞. 统计学专业本科生开设“数据挖掘〞课程的探讨[J]. 吉林工程技术师范学院学报, 2023(06):25-27. [7]石洪波,冀素琴,吕亚丽.财经院校信息类专业数据管理与分析课程群体系研究[J].高等财经教育研究,2023(3):54-58. [8]李姗姗,李忠.就业需求驱动下的本科院校数据挖掘课程内容体系探讨[J].计算机时代,2023(2):60-61. (作者单位:上海对外经贸大学 统计与信息学院,上海  202320)

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开