温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年初
数学
三角形
专题
练习
师大
三角形、
★★★主要知识点:
1.三角形的分类
三角形按边分类可分为_______和______(等边三角形是等腰三角形的特殊情况);按角分类可分为______、_______和_______,
2.一般三角形的性质
(1)角与角的关系:三个内角的和等于___°;三个外角的和等于___;一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角,____________。
(2)边与边的关系:三角形中任两边之和大于第三边,任两边之差小于第三边。
(3)边与角的大小对应关系:在一个三角形中,__边对等角;等角对等____。
(4)三角形的主要线段的性质(见下表):
名称
根本性质
角平分线
①三角形三条内角平分线相交于一点(内心);内心到三角形三边距离相等;②角平分线上任一点到角的两边距离相等。
中线
三角形的三条中线相交于一点。
高
三角形的三条高相交于一点。
边的垂直平分线
三角形的三边的垂直平分线相交于一点(外心);外心到三角形三个顶点的距离相等。
3. 几种特殊三角形的特殊性质
(1)等腰三角形的特殊性质:①等腰三角形的两个_____角相等;②等腰三角形_______、_____中线和______是同一条线段,三线合一;这条线段所在的直线是等腰三角形的对称轴。
(2)等边三角形的特殊性质:①等边三角形每个内角都等于___°。②三线合一
(3)直角三角形的特殊性质:①直角三角形的两个锐角互为___角; 4. 三角形的面积一般三角形:S △ = a h( h 是a边上的高 )
例1: (根底题) 如图, AC//DF , GH是截线.
∠CBF=40°, ∠BHF=80°.
求∠HBF, ∠BFP, ∠BED.∠BEF
例2: (根底题)
①在△ABC中,∠B = 40°,∠C = 80°,那么∠A = (度)
②:、。如图,△ABC中,∠A = 60°,∠C = 50°,那么外角∠CBD = 。
③,在△ABC中, ∠A + ∠B = ∠C,那么△ABC的形状为( )
A、直角三角形 B、钝角三角形 C、锐角三角形 D、以上都不对
④以下长度的三条线段能组成三角形的是( )
A.3cm,4cm,8cm B.5cm,6cm,11cm C.5cm,6cm,10cm D.3cm,8cm,12cm
⑤如果一个三角形的三边长分别为x,2,3,那么x的取值范围是 。
⑥小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_ .______.
⑦等腰三角形的一边长为6,另一边长为10,那么它的周长为
⑧在△ABC中,AB = AC,BC=10cm,∠A = 80°,那么∠B = ,
∠C = 。BD=______,CD=________
⑨如图,AB = AC,BC ⊥ AD,假设BC = 6,那么BD = 。
B
A
C
⑩画一画 如图,在△ABC中:
(1).画出∠C的平分线CD
(2).画出BC边上的中线AE
(3).画出△ABC的边AC上的高BF
例3: (提高)
①△ABC中,∠C=90°,∠B-2∠A=30°,那么∠A= ,∠B=
③在等腰三角形中,一个角是另一个角的2倍,求三个角?_______________________
④:在等腰三角形中,,周长为40cm,一个边另一个边2倍,求三个边?_________________
例4 如图,D是△ABC的∠C的外角平分线与BA
的延长线的交点,求证:∠BAC>∠B
例5:(15,)
例6.ABC为等边三角形,D是AC中点,E是BC延长线上一点,且CE = BC
求证: BD = DE
一、选择题:
1. 等腰三角形中,一个角为50°,那么这个等腰三角形的顶角的度数为( )
°°°或80°°
2. 在△ABC中, ∠A=50°, ∠B,∠C的角平分线相交于点O,那么∠BOC的度数是( )
2
C
3
N
M
B
1
A
A. 65° B. 115° C. 130° D. 100°
3.如图,如果∠1=∠2=∠3,那么AM为△ 的角平分线,
AN为△ 的角平分线。
二、填空题:
1. 。
2.
3.
4. △ABC中,那么∠A + ∠B + ∠C = (度)
5. 。假设AD是△ABC的高,那么∠ADB = (度)。
6. 假设AE是△ABC的中线,BC = 4,那么BE = =
7. 假设AF是△ABC中∠A的平分线,∠A = 70°,那么∠CAF = ∠ = (度)。
8. △ABC中,BC = 12cm,BC边上的高AD = 6cm,那么△ABC的面积为 。
9. 直角三角形的一锐角为60°,那么另一锐角为 。
10. 等腰三角形的一个角为45°,那么顶角为 。
11. 在△ABC中,∠A:∠B:∠C = 1:2:3,∠C = 。
12. 如图,∠BAC=90°,AD⊥BC,那么图中共有 个直角三角形;
13. △ABC中,BO、CO分别平分∠ABC、∠ACB假设∠A=70°,那么∠BOC= ;假设∠BOC=120°,∠A= 。
三、解答题:
14、如图4,∠1+∠2+∠3+∠4= 度;
B
C
A
D
15、如图;ABCD是一个四边形木框,为了使它保持稳定的形状,需在AC或BD
上钉上一根木条,现量得AB=80㎝,BC=60㎝,
CD=40㎝,AD=50㎝,试问所需的木条长度至少要多长?
16有一天小明对同学说:“我的步子大,一步能走三米(即两脚着地时的间距有三米〞。有的同学将信将疑,而小颖说:“小明,你在吹牛〞。你觉得小颖的话有道理吗?
17. 图1-4-27,在△ABC中,AB=AC,∠A=40°,
∠ABC的平分线BD交AC于D.
求:∠ADB和∠CDB的度数.
.18。等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4。
求等腰三角形各边的长。
A
E
D
C
B
19.:如图,点D、E在△ABC的边BC上,AD=AE,BD=EC,
求证:AB=AC
.20。.如图,在△ABC中,AB=AC,BD⊥AC于D,
CE⊥AB于E,BD与CE相交于M点。求证:BM=CM。
21.、如图,P、Q是△ABC边上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数。
.22。如图,在△ABC中,AB=AC,点D、E分别
在AC、AB上,且BC=BD=DE=EA,求∠A的度数。
E
F
D
C
B
A
23.、如图,BE、CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线。试探求∠F与∠B、∠D之间的关系,并说明理由。
例1、填空:
。
(6)正二十边形的每个内角都等于 。
(7)一个多边形的内角和为1800°,那么它的边数为 。
(8)n多边形的每一个外角是36°,那么n是 。
(9)多边形的每一个内角都等于150°,那么从此多边形一个顶点出发引出的对角线有 条。
(10)如果把一个多边形截去一个三角形,剩下的多边形的内角和是2160°,那么原来的多边形的边数是 。
(11)一多边形除一内角外,其余各内角之和为2570°,
那么这个内角等于 。
例5、给定△ABC的三个顶点和它内部的七个点,这十个点中的任意三点都不在一条直线上,把原三角形分成以这些点为顶点的小三角形,并且每个小三角形的内部都不包含这十个点中的任一点,求证:这些小三角形的个数是15。