温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
疼痛
压痛
疼痛与压痛点
疼痛是机体的警告信号及反应系统。近几十年来,有关于疼痛的研究进展迅速,现在 将主要成果简诉如下。
(1) 关于疼痛有无独立的感受体,这一争论还在继续,但现已明确有两大类损害受体存在。
(2) 就其中枢结构而言,估计也有与末梢部分所具有的性质相同的两类系统存在。从而更有力地支持以前提出的双重疼痛学说。
(3) 随着末梢、脑内刺激产生的 镇痛作用和各种内因类鸦片及其受体的发现,已证明中枢神经系统中存在痛觉抑制系统
(4) 与感受损害有关的主要类鸦片肽,有内啡肽、脑啡肽等。其产生的前驱物质及产生细胞均各不相同。
(5) 现已证明,痛觉神经末梢有神经肽分泌,其与神经性炎症的发生有关。痛觉系统与炎症及免疫系统有关。
第一节 痛觉传递学说简介
一. 末梢痛觉受体
现已确认,能传达损害性刺激的感受器大致有分两类;一类是高或值机械感受器,只感受足以引起损害的刺激,另一类对非损害性刺激也有反应,如多脉冲编码装置感受器。
(一) 高或值机械感受器
细小有髓纤维传导皮肤受到刺激等能导致组织破坏的刺激,一般情况下,对其他刺激不 起反应。反复热刺激可引起反应。其范围为1~8c㎡ 的圆形或椭圆形,有3~20个感受点。
(二)多脉冲编码装置感受器
皮肤主要由无髓神经,深部组织由有髓神经传导兴奋。这一感受器对机械的、化学的以及热刺激均有反应。它分布广泛,不仅分布在皮肤,还在骨骼肌、内脏各器官接受各种刺激。另外,其特点是接受刺激相同,但反应却不一样。在损害部位有多种与炎症有关的化学物质生成。多脉冲编码装置感受器的感受性与缓激肽的浓度有关,而前列腺素E2、5-HT、组胺等均可显著加强这一反应,而阿司匹林可以明显抑制缓激肽反应。临床上常见疼痛主要是由多脉冲编码装置感受器传导的 。
二. 痛觉的中枢结构
(一)脊髓结构
Rexed将脊髓灰白质分10层,一层边缘细胞中可见到只含高或值机械感受器
感受输入神经元,接受A纤维传入信息,并有分支至五层,受机械刺激影响。二层胶样物质,接受皮肤多脉冲编码装置感受器,一级向心性C纤维。此处还有类鸦片物质,它有中间传导并修饰(改变)末梢神经的兴奋传入信息。
(二) 脊髓内损害受体纤维终端与神经肽
后根神经节内小细胞群,后角背侧有P物质及抑生长素。(1)当皮肤及组织有损害刺激时后角内P物质释放,末梢神经传至后根强刺激。它增加感受刺激神经元活动,降低痛觉反应或值。(2)当皮肤及组织受到热刺激时,脊髓背侧部神经纤维有生长抑素释放。
(三) 脊髓的上行传导路径
可分两大类,一为浅感觉传导路径,另一为深感觉传导路径。浅感觉传导痛觉、温度觉和轻触觉,其传入纤维由后根外侧部进入脊髓,更换神经原后,发出纤维在中央管前交叉到对侧,分别经脊-丘脑侧束(痛、温觉)和脊-丘脑前束(轻触觉)上行到丘脑。深感觉传导肌肉本体感和深部压觉,其传入纤维由后根内侧部(粗纤维)进入脊髓后,其上行分支在同侧后索上行,到延髓下部薄束核和楔束核,更换神经原后在发出纤维交叉到对侧内侧丘系到达丘脑。
至于疼痛的传导通路,又分为快痛(A纤维,兴奋或值较低),和慢痛(C纤维,兴奋或值较高)两种。其一是传导快痛的通路---新脊丘束。在脊丘束中占30%,经后角交叉到对侧后上行到丘脑后腹核,而后到大脑皮质中央后回,引起有定位体征的痛觉。其二是位于新脊丘内侧的旧脊丘束,是由C-纤维传达慢痛的通路,上行到丘脑髓板内核群,而后投射到大脑边缘叶和第二体表感觉区,在引起疼痛的同时伴有强烈的情绪反应。另外还有旁正中上行系统,由C纤维传入,上行到脑干网状结构,而后到丘脑。它与慢痛和情绪也有关。大脑边缘系统和感觉第1区、第2区有联系。前者是机体受到疼痛刺激后精神、情绪调节的重要部位。
三. 疼痛感受器输入信号与机体反应
机体受到损害刺激时,通过痛觉受体传入的信号,可引起全身整体的功能变化,如躲避的 肌肉屈曲反射,呼吸循环加快,局部缓激肽只有几纳克(ng)即可引起多脉冲编码装置感受单位放电,引起疼痛。如动脉内注入缓激肽,即可引起血管通透性增加,血压上升。
皮肤破损部位红肿等是 由于传入末梢神经轴索反应,使血管扩张,通透性增加,多脉冲编码装置感受器兴奋,从其末梢分泌出P物质。P物质可促进肥大细胞释放组织胺,加强白细胞吞噬等作用,还有使T淋巴细胞DNA蛋白质合成促进等作用。
四. 与疼痛传递有关的介质
(一) P物质
疼痛的第一级传入末梢递质,是一种11肽。在脊髓后角一、二层罗氏胶质区含量很高。当刺激后根时,后角的P物质增多,结扎或切断后根则可使之减少。中枢神经系统许多结构也含P物质。它分布情况和 脑啡肽很相似,两者在脑内可能有拮抗作用。另外,肌肉活动时也克产生P物质。正常情况下由血液循环移除,当循环受阻,相对缺血时,P物质积到一定程度也可致痛。
(二) 脑啡肽
是一种5肽,又称吗啡样因子,从脑组织中可提取激活吗啡受体的内源物质,在脊髓、三叉脊束核的胶质区有密集的脑啡肽能神经原,它与感觉传入末梢形成实触联系,抑制疼痛信息的传递,产生镇痛效应。它在弥散性痛和慢性痛以及疼痛反应的情绪中枢分布较多。
(三) 炎症介质
在组织、细胞损伤或炎症时,可释放多种化学特质,对炎症发展、致痛起重要作用,统称炎性介质
1. K*与H*
当组织损伤或炎症时,细胞释放出K*与H*。K*浓度达10~15MEq/L时,有致痛作用。局部循环障碍或缺血时,常因H*浓度升高(Ph5.3以下)而致痛。
2. 组胺 (H特质)
肥大细胞、嗜碱粒细胞、血小板受到机械、放射、化学损伤使之释放。当其浓度超过10-5g/ml以上时,即可致痛。浓度较低时(10-7g~10-5g/ml)而引起痒感。
3. 5-羟色胺(5-HT)
存在于血小板,肥大细胞、肠道嗜银细胞内,当受到炎症刺激时,引起血管通透性增加,血小板崩解时释放5-HT,其致痛浓度为10-7/ml,也是外周致痛物质。在中枢5-HT起抑制作用。
4.溶酶体酶
中性粒细胞内含有中性蛋白酶,烧伤与类风湿性关节炎滑膜中,溶酶体活性增加,破坏组织使血管通透性增加。
5. 胞浆素
胞浆素可消除因损伤或炎症产生于组织间隙的纤维蛋白,如胞浆素因缺血、吸烟等 原因而减少,即可引起纤维蛋白积聚,形成瘢痕(在慢性腰背劳损中在病变肌束或肌纤维间形成瘢痕),引起持久疼痛。
6. 激肽类
炎症损伤血管内皮系统,激活血浆凝活因子七,从而激肽系统激活,只要增几纳克激肽,即能引起血管通透性增加,同时引起致痛作用。急性痛风、慢性风湿、类风湿关节液内均有激肽活性增加,破坏软骨引起疼痛,烧伤水泡内激肽活性高,疼痛明显。
7. 前列腺素
由细胞膜磷脂在磷脂酶A2催化下生成。PGE使微血管扩张,引起红斑水肿,能加强缓激肽和组织胺的作用,能提高痛觉末梢的敏感性,加强并延长机械及化学刺激的致痛作用。
五、吗啡类鸦片受体的镇痛作用及部位
吗啡是由植物罂粟提取的物质,它有显著的镇痛作用。人体内在正常情况下即有内源的吗啡样因子,它是一种5肽,称脑啡肽。它有抑制疼痛的作用,它与上述的疼痛传导介质及神经系统内存在的类鸦片受体,组成复杂的机体传导和抑制疼痛的机制,并受到精神、心理多种因素的影响而改变。(图4—1)
(一) 吗啡镇痛的作用部位
1. 脊髓后角,突触前C纤维末梢类鸦片受体(u),抑制P物质及生长抑素两种肽的游离,对突触后膜也有抑制作用。
2. 对后角突触的间接抑制
(1) 对中脑导水管周围灰白质(PAG)有抑制作用,对脊髓后角也起间接抑制作用。
(2) 对脑干旁巨细胞网状核(NRPG)起作用。进而促进去甲肾上腺素而抑制P物质,同时也促使类鸦片肽增加而抑制P物质。
(3) 对脑干大缝际核(NRM)促进产生5羟色胺,而对脊髓后角抑制其生长抑素的游离。
3. 对脑干上行的抑制作用
(1) 对延髓网状结构至丘脑多突触有上行抑制作用。
(2) 对丘脑至大脑感觉区经络,延长不应期。
(3) 对大脑边缘系统抑制,提高对疼痛的耐受性,接触对疼痛的不安感觉。中枢下行性抑制系统及类鸦片的作用由脑干,脊髓后角至传入神经纤维。见图4—1.
(二) 类鸦片受体
与镇痛有关之受体有R、&、K三种,主要分布在痛觉传导的向心经路,其他部位也有分布。能与上述受体结合的类鸦片肽,至少有9种,这些肽来自其前体蛋白,大致可分为三类:脑啡肽、B-内啡肽、强啡肽。
(三) 内因性非类鸦片镇痛物质
肽类有Kyotorphin neo-kyotorphin、神经紧张素、促甲状腺释放激素。胺基类有去甲肾上腺素(NE)、5-HT及乙酰胆碱(后二者在中枢有抑制作用,在外周有兴奋作用)。Kyotorphin可用纳洛酮消除其镇痛作用。
(四) 内因性类鸦片拮抗物质
如黑色素细胞激素游离抑制因子,ACTH碎片,B-内啡肽,缩胆囊素肽(CCK-8)及血管紧张素 一、三。它们可能与类鸦片都有相反的作用。
六. 关于闸门控制学说
1965年Melzack和Wall介绍生物体内抑制疼痛的学说,即在脊髓后角第二层胶样物质中有多数小型神经元,可抑制疼痛的传导。它们的作用类似阀门,是靠刺激感觉粗纤维(AB)等激活其功能的。原始的阀门学说实际上还存在许多问题,当其向上传导时,必定受到多种神经来源的干扰和修饰。因此,Wall在1978年已予以修正,认为影响疼痛的阀门有三个方面,即输入纤维、髓内分解反应及下行控制。三者相互制约,相互影响。
1.输入纤维在脊髓后角主要止于最上两层。AS纤维更深入到 第五层,较粗低或值的 机械感受传导纤维主要止于三、四层。这些纤维在受到刺激时即引起疼痛。此外,它们也诱发抑制疼痛的功能
2.髓内分节段反应(segmental reaction)。中枢神经系统细胞的作用,即选择即选择、编排组合输入至后角灰质细胞的信号。有的信号积累相加,而另一些则可通过神经原间而诱发抑制机制。由背侧到腹侧各层之间又接受其上层细胞组合的信息(由传入纤维带来的新信号)。按这种方式,越在下层(腹侧)的细胞越是复杂,越是精细。这个程序最终则导致运动原神经的 放射,同时它又受到下行控制的调节。
3. 下行控制(descending controls)参与闸门控制很重要的一缓解即是由中脑、脑干的缝际核(raphe nuclei)和网状核,它们通过内源脑啡肽内啡肽(由网状核诱发)及5-羟色胺(主要由缝际核产生)还有其他的控制神经原及有关的肽类,而使脊髓后角的传入信号减弱,亦即由低或值的传入信号通过高级中枢而诱发的下行控制机制,从而提高了痛或。
针刺治疗镇痛的机理即是一例。针刺激发体内调节能力,包括;(1)兴奋AB纤维激活脊髓后角胶样物质内神经元,抑制疼痛传导(提高了痛或闸门)。(2)针刺启动了中枢下行性抑制,内啡肽增加。(3)针刺产生损伤性电流,阻断痛感传导,同时改变植物神经兴奋性,使疼痛局限。(4)针刺使痛或上升,还由于丘脑上部缰核内r-氨基丁酸(GABA)增高,抑制缰核活动水平,而提高痛或起到镇痛作用。(GABA是抑制性神经递质)
这些事实表明,对闸门学说的认识还在不断发展,补充和完整
第二节 神经根受压后的病理生理学
一. 神经根的构成
正常情况下,脊神经的前后根在椎管内合成包括感觉、运动神经纤维的混合神经。在颈部由颈4~8和胸1的神经根形成臂丛,然后分别形成桡、尺、正中、肌皮神经,在胸段则形成脊肋间神经。腰骶段的脊神经在第二腰椎以下形成马尾神经,并各按相应的节段穿出椎管,在椎旁形成腰丛(胸12、腰1~3)和骶丛(腰4、5,骶1~4)然后分别形成腹神经及坐骨神经干。据统计,一条坐骨神经感有30万条神经纤维组成。以上神经根至神经干均有伴行血管,带有植物神经供应,调节血管的收舒功能。
神经干内的纤维又分为多种(表4-1),如专司传出信息的Aa纤维以及专司传入信息的AB纤维(皮肤触压觉),及AS纤维(专司痛温觉和深部压觉传入)以上纤维均较粗(2~20nm),传导非常迅速