温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
EEG
signal
processing
电信号
处理
方法
算法
EEG SIGNAL PROCESSING EEG signal modelling 1 Available features 2 Classification algorithms 3 Independent Component Analysis 4 CONTENT Sparse Representation 5 1 EEG signal modelling Bioelectricity 1 Signal generation system 2 BIOELECTRICITY SIGNAL GENERATION SYSTEM Excitation model SIGNAL GENERATION SYSTEM BIOELECTRICITY Linear Model SIGNAL GENERATION SYSTEM BIOELECTRICITY Nonlinear Model 2 Available features Basic features 1 Modern methods 2 Temporal Analysis Signal Segmentation:label the EEG signals by segments of similar characteristics.BASIC FEATURES MODERN METHODS Temporal Criteria BASIC FEATURES MODERN METHODS Frequency Analysis Suboptimal DFT,DCT,DWT;Optimal KLT(Karhunen-Lo ve)Demerits:complete statistical information,no fast calculation.BASIC FEATURES MODERN METHODS Signal Parameter Estimation AR model:Merits:Outperform DFT in frequency accuracy.Demerits:suffer from poor estimation of parameters.Improvements:accurate order&coefficients.MODERN METHODS BASIC FEATURES AR coefficients estimation methods Yule-Walker aryule(x,p)Merits:Toeplitz matrix Levinson-Durbin,fastest!Demerits:with window bad resolution of PSD MODERN METHODS BASIC FEATURES AR coefficients estimation methods Covariance method arcov(x,p),armcov(x,p)Merits:without window good resolution of PSD Demerits:slow Burg arburg(x,p)Merits:accurate approximation of PSD Demerits:line skewing&splitting MODERN METHODS BASIC FEATURES MODERN METHODS BASIC FEATURES Comparison Principal Component Analysis Use same concept as SVD Decompose data into uncorrelated orthogonal components Autocorrelation matrix is diagonalized Each eigenvector represents a principal component Application decomposition,classification,filtering,denoising,whitening.MODERN METHODS BASIC FEATURES 3 Sparse Representation Sparse Approximation 1 Sparse Decomposition 2 Over-complete dictionary atoms Hilbert space :Signal:Error:“Sparse”:lN,satisfy limited error.SPARSE APPROXIMATION SPARSE DECOMPOSITION,1,2,.kDd kKKNyHllrrr Iyd(,)inflllyy DyyNHRMajor algorithms:Basic Pursuit,Matching Pursuits,OMP Matching Pursuits(MP):1st:kth:SPARSE DECOMPOSITION SPARSE APPROXIMATION 0(1,.),rikiy dsupy d 001,rryy ddR y1(1,2,.),kkrikkiR y dsupR y d 10,nnknrrknyR y ddRy 与与 正交正交 nrd1kRyK-SVD:training dictionary Potential applications for EEG:Coefficients features ERP detection Abnormal EEG detection Classification of different status of EEG SPARSE DECOMPOSITION SPARSE APPROXIMATION 4 Classification algorithms Common methods 1 Na ve Bayes LDA:Linear Discriminant Analysis HMM:Hidden Markov Modelling SVM:Support Vector Machine K-means ANNs:Artificial Neural Networks Fuzzy Logic COMMON METHODS 5 Independent Component Analysis ICA approaches 1 Application 2 Independent Component Analysis ICA APPROACHES APPLICATIONS ICA APPROACHES APPLICATIONS ICA approaches:Factorizing the joint PDF into its marginal PDFs Decorrelating signals through time Eliminating temporal cross-correlation function BSS:Blind Source Separation Normal brain rhythms,event-related sources Artefacts eye movement&blinking,swallow APPLICATIONS ICA APPROACHES THANKS!