分享
呼吸作用与果蔬贮藏的关系.docx
下载文档

ID:102445

大小:62.24KB

页数:18页

格式:DOCX

时间:2023-02-24

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
呼吸 作用 贮藏 关系
呼吸作用与果蔬贮藏的关系     呼吸作用是采后果蔬的一个最基本的生理过程,它与果蔬的成熟、品质的变化以及贮藏寿命有密切的关系。 (一)呼吸强度与贮藏寿命     呼吸强度(respiration rate)是评价呼吸强弱常用的生理指标,它是指在一定的温度条件下,单位时间、单位重量果蔬放出的CO2量或吸收O2的量。呼吸强度是评价果蔬新陈代谢快慢的重要指标之一,根据呼吸强度可估计果蔬的贮藏潜力。产品的贮藏寿命与呼吸强度成反比,呼吸强度越大,表明呼吸代谢越旺盛,营养物质消耗越快。呼吸强度大的果蔬,一般其成熟衰老较快,贮藏寿命也较短。例如,不耐贮藏的菠菜在20-21℃下,其呼吸强度约是耐贮藏的马铃薯呼吸强度的20倍。常见的果蔬呼吸强度见表2-4。 测定果蔬呼吸强度的方法有多种,常用的方法有气流法、红外线气体分析仪、气相色谱法等。 (二)呼吸热     前面已提到果蔬呼吸中,氧化有机物释放的能量,一部分转移到ATP和NADH分子中,供生命活动之用。一部分能量以热的形式散发出来,这种释放的热量称为呼吸热(respiration heat)。已知每摩尔葡萄糖通过呼吸作用彻底氧化分解为CO2和水,放出自由能2867.5KJ;在这过程中形成36molATP,每形成1molATP需自由能305.1KJ,形成36molATP共消耗1099.3KJ,约占葡萄糖氧化放出自由能的38%。这就是说,其余62%(1768.1KJ)的自由能直接以热能的形式释放。 由于果蔬采后呼吸作用旺盛,释放出大量的呼吸热。因此,在果蔬采收后贮运期间必须及时散热和降温,以避免贮藏库温度升高,而温度升高又会使呼吸增强,放出更多的热,形成恶性循环,缩短贮藏寿命。为了有效降低库温和运输车船的温度,首先要算出呼吸热,以便配置适当功率的制冷机,控制适当的贮运温度。      根据呼吸反应方程式,消耗1mol己糖产生6mol(264g)CO2,并放出2817.3KJ能计算,则每释放1mgCO2,应同时释放10.676J(2.553cal)的热能。假设这些能全部转变为呼吸热,则可以通过测定果蔬的呼吸强度计算呼吸热。以下是使用不同热量单位计算时的公式。 呼吸热(J/kg.h)=呼吸强度(CO2 mg/kg.h)×10.676 呼吸热(cal/kg.h)=呼吸强度(CO2 mg/kg.h)×2.553 每天每吨产品产生的呼吸热为: 呼吸热(KJ/t.d)=呼吸强度(CO2 mg/kg.h)×256.22 呼吸热(Kcal/t.d)=呼吸强度×61.27 例如,甘蓝在5℃的呼吸强度为24.8CO2mg/kg·h,则每吨甘蓝每天产生的呼吸热为61.27×24.8=1519.5 kcal。 (三)感病组织呼吸的变化     果蔬组织受到病原微生物的侵染以后,其呼吸强度普遍提高。采前或采后的病害均可引起呼吸上升,呼吸强度的提高通常与病状同时发生或在症状出现之前。在病原微生物形成孢子时,呼吸达到最高值,以后逐渐下降。感病组织释放的CO2量或吸收的O2量,来自寄主组织和病原微生物两方面的呼吸作用。对于细菌性病害,O2消耗的增加主要是病原细菌呼吸的结果;对于真菌性病害,O2消耗的增加则主要是病原真菌诱导植物组织的反应。 在贮运保鲜的生产实践中,常有这样的现象:一箱果实(如香蕉或西红柿等)里有一两个果实腐烂了,这箱子里的其它果实很快就成熟了。这是由于病原微生物侵染植物组织,诱导了植物组织的乙烯产生,促进果蔬的呼吸而加速成熟衰老,影响果蔬的贮藏寿命,形成恶性循环。 在植物和病原微生物的相互作用中,植物通过增强呼吸作用氧化分解病原微生物所分泌的毒素,以消除其毒害。当植物受伤或受到病菌侵染时,也通过旺盛的呼吸,促进伤口愈合,加速木质化或栓质化,以减少病菌的侵染。此外,呼吸作用的加强可促进绿原酸等具有杀菌作用物质的合成,以增强植物的抗病性。 (四)呼吸跃变与贮藏保鲜     果实的呼吸跃变直接影响品质的变化、耐藏性、抗病性,有关呼吸跃变的问题将在下面详细讨论。 三、呼吸跃变     有一类果实从发育、成熟到衰老的过程中,其呼吸强度的变化模式是在果实发育定型之前, 呼吸强度不断下降,此后在成熟开始时,呼吸强度急剧上升,达到高峰后便转为下降,直到衰老死亡,这个呼吸强度急剧上升的过程称为呼吸跃变(respiratory climacteric),这类果实(如香蕉、番茄、苹果等)称为跃变型果实。另一类果实(如柑橘、草莓、荔枝等)在成熟过程中没有呼吸跃变现象,呼吸强度只表现为缓慢的下降,这类果实称为非跃变型果实。果实在发育和成熟衰老过程的呼吸变化曲线见图2-7。从图可见,呼吸跃变和乙烯释放的高峰都出现在果实的完熟期间,表明呼吸跃变与果实完熟的关系非常密切。当果实进入呼吸跃变期, 耐藏性急剧下降。人为地采取各种措施延缓呼吸跃变的到来,是有效地延长果蔬贮藏寿命的重要措施。 图2–7 跃变型和非跃变型果实的生长、呼吸、乙烯产生的曲线(Will等,1998) (一)跃变型果蔬和非跃变型果蔬     根据果蔬在完熟期间的呼吸变化模式,可将果蔬分为跃变型和非跃变型两大类型(表2-5)。一些叶菜的呼吸模式可以认为是非跃变型。 表2-5 跃变型和非跃变型果蔬的分类 (Biale 和Young,1981) 跃变型果蔬(climacterkic fruits)的呼吸强度随着完熟而上升。不同果蔬在跃变期呼吸强度的变化幅度明显不同(图2-8A),       其中面包果的呼吸跃变上升的陡度最大,苹果呼吸跃变高峰期的呼吸强度约是初期的2倍,而香蕉跃变高峰时几乎是跃变前的10倍,桃发生跃变时呼吸强度却只上升约30%。大多数的果实在树上或采收后都有呼吸跃变现象,但是在树上的苹果和其他一些果实的呼吸跃变被推迟。鳄梨和芒果在树上不能成熟,将果实摘下,通常能刺激呼吸跃变和成熟。在跃变型果实中,不同果实产生呼吸跃变与乙烯高峰的时间不一样。梨、鳄梨和其它一些果实,呼吸跃变期和乙烯释放高峰期是一致的。在一些苹果中,呼吸高峰早于乙烯释放高峰出现,而香蕉,乙烯的释放高峰明显早于呼吸高峰。     非跃变型果实(nonclimacteric fruits)呼吸的主要特征是呼吸强度低,并且在成熟期间呼吸强度不断下降(图2-8B)。     非跃变型果实也表现与完熟相关的大多数变化,只不过是这些变化比跃变型果实要缓慢些而已。柑橘是典型的非跃变型果实,呼吸强度很低,完熟过程拖得较长,果皮褪绿而最终呈现特有的果皮颜色。     跃变型果实出现呼吸跃变伴随着的成分和质地变化,可以辨别出从成熟到完熟的明显变化。而非跃变型果实没有呼吸跃变现象,果实从成熟到完熟发展过程中变化缓慢,不易划分。大多数的蔬菜在采收后不出现呼吸跃变,只有少数的蔬菜在采后的完熟过程中出现呼吸跃变(图2-9)。 例如,番茄的着色与呼吸跃变有密切的关系,当绿熟番茄的颜色转变为淡红色时,呼吸强度达到高峰,完熟后呼吸强度下降,进入呼吸跃变的后期。 (二)跃变型果实和非跃变型果实的区别 跃变型果实和非跃变型果实的区别,不仅在于完熟期间是否出现呼吸跃变,而且在内源乙烯的产生和对外源乙烯的反应上也有显著的差异。    1.两类果实中内源乙烯的产生量不同     所有的果实在发育期间都产生微量的乙烯。然而在完熟期内,跃变型果实所产生乙烯的量比非跃变型果实多得多,而且跃变型果实在跃变前后的内源乙烯的量变化幅度很大。非跃变型果实的内源乙烯一直维持在很低的水平,没有产生上升现象(表2-6)。     2.对外源乙烯刺激的反应不同     对跃变型果实来说,外源乙烯只在跃变前期处理才有作用,可引起呼吸上升和内源乙烯的自身催化,这种反应是不可逆的,虽停止处理也不能使呼吸回复到处理前的状态。而对非跃变型果实来说,任何时候处理都可以对外源乙烯发生反应,但将外源乙烯除去,呼吸又恢复到未处理时的水平。     3.对外源乙烯浓度的反应不同     提高外源乙烯的浓度,可使跃变型果实的呼吸跃变出现的时间提前,但不改变呼吸高峰的强度,乙烯浓度的改变与呼吸跃变的提前时间大致呈对数关系(图2-10)。 对非跃变型果实,提高外源乙烯的浓度,可提高呼吸的强度,但不能提早呼吸高峰出现的时间。 图2-10 不同浓度的乙烯对跃变型果实和非跃变型果实呼吸作用的影响 (Biale,J.B.,1964)     4.乙烯的产生体系     McMurchie等(1972)用500μg·g-1丙烯处理跃变型果实香蕉,成功地诱导出典型的呼吸跃变和内源乙烯的上升;而非跃变型果实柠檬和甜橙用丙烯处理,虽能提高呼吸强度,但不能增加乙烯的产生。表明跃变型果实有自身催化乙烯产生的能力,非跃变型果实则没有这个能力。McMurchie等由此提出了植物体内有两套乙烯合成系统的理论,认为所有植物生长发育过程中都能合成并能释放微量的乙烯,这种乙烯的合成系统称为系统I。就果实而言,非跃变型果实或未成熟的跃变型果实所产生的乙烯,都是来自乙烯合成系统I。而跃变型果实在完熟期前期合成并大量释放的乙烯,则是由另一系统产生,称为乙烯合成系统Ⅱ,它既可以随果实的自然完熟而产生,也可被外源乙烯所诱导。当跃变型果实内源乙烯积累到一定限值,便出现生产乙烯的自动催化作用,产生大量内源乙烯,从而诱导呼吸跃变和完熟期生理生化变化的出现。系统Ⅱ引发乙烯自动催化作用一旦开始即可自动催化下去,产生大量的内源乙烯。非跃变型果实只有乙烯生物合成系统I,缺少系统Ⅱ,如将外源乙烯除去,则各种完熟反应便停止。这个理论得到Yang(1981)实验的支持。Yang 和Hoffman(1984)以及Bufler(1984)发现系统Ⅱ是通过ACC合成酶和乙烯形成酶(EFE)激活所致。当系统I生成的乙烯或外源乙烯的量达到一定阀值时,便启动了这两种酶的活性。非跃变型果实只有系统I而无系统Ⅱ,跃变型果实则两者都有,也许这就是两种类型果实的本质差异所在。     关于两种类型果蔬呼吸和完熟过程中的乙烯变化及其作用,可归纳如表2-7。 四、影响呼吸强度的因素 果蔬的呼吸作用与贮藏寿命有密切关系,在不妨碍果蔬正常生理活动和不出现生理病害的前提下,应尽可能降低它们的吸吸强度,以减少物质的消耗,延缓果蔬的成熟衰老。因此,有必要了解影响果蔬呼吸的因素。 (一)果蔬本身的因素 1.种类与品种 不同种类果蔬的呼吸强度有很大的差别(表2-4),一般来说,夏季成熟的果实比秋季成熟的果实呼吸强度要大,南方水果比北方水果呼吸强度大。例如,在25℃条件下,糯米糍荔枝的呼吸强度(CO2110mg/kg·h)约是金帅苹果(CO221mg/kg·h)的5倍,约是鸭梨呼吸强度的3.7倍。同一种类果实,不同品种之间的呼吸强度也有很大的差异。例如,同是柑橘类果实,年桔的呼吸强度约是甜橙的2倍。在蔬菜中,叶菜类和花菜类的呼吸强度最大,果菜类次之,作为贮藏器官的根和块茎蔬菜如马铃薯、胡萝卜等的呼吸强度相对较小,也较耐贮藏。 2.发育年龄和成熟度 在果蔬的个体发育和器官发育过程中,以幼龄时期的呼吸强度最大,随着发育呼吸强度逐渐下降。幼嫩蔬菜的呼吸最强,是因为正处在生长最旺盛的阶段,各种代谢活动都很活跃,而且此时的表皮保护组织尚未发育完全,组织内细胞间隙也较大,便于气体交换,内层组织也能获得较充足的O2。老熟的瓜果和其它蔬菜,新陈代谢强度降低,表皮组织和蜡质、角质保护层加厚并变得完整,呼吸强度较低,则较耐贮藏。一些果实如西红柿在成熟时细胞壁中胶层溶解,组织充水,细胞间隙被堵塞而使体积缩小,这些都会阻碍气体交换,使得呼吸强度下降,呼吸系数升高。块茎、鳞茎类蔬菜在田间生长期间呼吸作用不断下降,进入休眠期,呼吸降至最低点,休眠结束,呼吸再次升高。 3.同一器官的不同部位 果蔬同一器官的不同部位,其呼吸强度的大小也有差异。如蕉柑的果皮和果肉的呼吸强度有较大的差异(表2-8)。 (二)温度和湿度     1.温度      温度是

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开