分享
2023年镇江市九年级数学期末试卷及答案.docx
下载文档

ID:1020871

大小:25.13KB

页数:11页

格式:DOCX

时间:2023-04-17

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023 镇江市 九年级 数学 期末试卷 答案
2023~ 2023学年度第一学期期末考试 九年级数学试卷 〔时间:90分钟 总分值:120分〕 一、填空题(本大题共15小题,每空1分,共22分,把答案写在题中的横线上。) 1.当x________时,二次根式有意义。 2.计算:=________;=________;=_________。 3.对于数据3、2、1、0、-1,它的极差是____ _,平均数是 _,方差是 。 8cm,中位线长10cm,那么下底长为 cm。 5.方程x2+2x-m=0的一个根是1,那么m = ;另一个根是 。 6.抛物线的顶点坐标是 ;当x______时,y随x增大而减小。 7.将抛物线向下移动2个单位后,得到的抛物线解析式是 ____    。 8.等边△ABC的边长为2cm,那么它的外接圆的半径为 cm,内切圆的半径为 cm.。 9.如果两圆相切,圆心距为7cm,一个圆的半径为4cm,那么另一个圆的半径是 __________ cm。 10.在半径为12cm的圆中,一条弧长为cm,此弧所对的圆周角的度数是 度。 11.如图,点A、B、C是⊙O上的三点,∠BAC=40°,那么∠OBC的度数是________度。 A B O C 〔题11图〕 〔题12图〕 12.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,那么⊙O的半径是__________ cm。 13.假设圆锥的底面半径是3cm,母线长是5cm,那么它的侧面展开图的面积是_______ cm2。 14.抛物线与轴只有一个公共点,那么的值为 。 15.如图为二次函数y=ax2+bx+c的图象,在以下说法中: ①ac<0; ②方程ax2+bx+c=0的根是x1= -1, x2= 3; ③a+b+c>0; ④当x>1时,y随x的增大而增大。 正确的说法有_____________。(把正确的答案的序号都填在横线上) 二、选择题 (本大题共6小题,每题3分,共18分,每题都给出代号为的四个结论,其中只有一个结论是正确的,请将正确结论的代号填在题后的括号内。) 16.以下根式中与是同类二次根式的是---------------------------------( ) A. B. C. D. 17.二次函数的图象上有两点(3,-8)和(-5,-8),那么此拋物线的对称轴是直线----------------------------------------------------------〔 〕 A. B. C. D. 18.甲、乙两组数据的平均数分别是,,方差分别是,,比拟这两组数据,以下说法正确的选项是-----------------------------------( ) A.甲组数据较好 B.乙组数据较好 C.甲组数据的极差较大 D.乙组数据的波动较小 19.对角线相等,并且互相垂直平分的四边形是---------------------------〔 〕 A.等腰梯形 B.矩形 C.菱形 D.正方形 20.如图,AB是⊙O的直径,BC,CD,DA是⊙O的弦, 且BC=CD=DA,那么∠BCD等于-----------------------------〔 〕 A.100° B.110° C.120° D.130° 21.以下说法中,正确的选项是--------------------------------------------〔 〕 A.等弦所对的弧相等 B.等弧所对的弦相等 C.圆心角相等,所对的弦相等 D.弦相等所对的圆心角相等 三、解答题 (本大题共8小题,共80分,解容许写出必要的文字说明,证明步骤,推理过程。) 22.解方程 (此题12分) (1) 〔2〕 23.计算〔此题12分〕 〔1〕 〔2〕 24.〔此题6分〕如图,平原上有三个村庄A,B,C,现方案打一水井P,使水井到三个村庄的距离相等。在图中画出水井P的位置。〔尺规作图,保存作图痕迹,不写作法。〕 25.〔此题8分〕如图,是平行四边形的对角线上的点,. 求证:四边形BFDE是平行四边形。 26.(此题8分)如图,AB是⊙O的直径,直线PQ过⊙O上的点C,PQ是⊙O的切线。 求证:∠BCP=∠A 27.(此题10分)如图,在矩形ABCD中,AB=6 cm,BC=9 cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,问: 〔1〕几秒后△PBQ的面积等于8 cm2? 〔2〕几秒后PQ⊥DQ 28.(此题12分)二次函数的图象以A〔-1,4〕为顶点,且过B〔2,-5〕 〔1〕求该函数的关系式; 〔2〕求该函数图象与坐标轴的交点坐标; 〔3〕将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至点、, 求的面积。 29.(此题12分)如图1,半圆O为△ABC的外接半圆,AC为直径,D为弧BC上的一动点。 〔1〕问添加一个什么条件后,能使得?请说明理由; 〔2〕假设AB∥OD,点D所在的位置应满足什么条件?请说明理由; D B A O C E 图2 D B A O C E · 图1 〔3〕如图2,在〔1〕和〔2〕的条件下,四边形AODB是什么特殊的四边形?证明你的结论。 参考答案和评分标准 一. 填空题 1. ≥2 2. ,,5 3. 4,1,2 4. 12 5. 3,-3  6.〔1,2〕,<1 7. y=-3x2-2 8. , 9. 3或11 10. 90 11. 50 12. 5 13. 15π 14. 8 15. ①②④ 二.选择题 三.解答题 22.(1) (x-2)2=7 ────2分 (2) 〔3x-5〕(x+2)=0 ────2分 x-2= ────4分 3x-5=0或x+2=0 ────4分 x=2 ────6分 x1= , x2=-2 ────6分 23.(1)原式= ──2分 〔2〕原式=--+ ───4分 = ──4分 =    ───6分 = ──6分 24.每作出一条线段中垂线各得2分, 标出交点P得2分。 25.证明:连结BD交AC于点O, ∵四边形ABCD是平行四边形, ∴BO=DO,AO=CO -------------------3分 又∵AE=CF ∴EO=FO -------------------6分 ∴四边形BFDE是平行四边形。 ----------8分 26. 证明:连结OC, ∵PQ是⊙O的切线, ∴ ∠OCP=90º, ∴∠BCP+∠BCO=90º; ---------------2分 ∵AB是⊙O的直径, ∴∠BCA=90º, ∴∠A+∠B=90º; ---------------4分 又∵OB=OC, ∴∠B=∠BCO, ---------------6分 ∴∠BCP=∠A . ---------------8分 27.解:〔1〕设秒t后⊿PBQ的面积等于8cm2, 据题意有 ,--------------------3分 解得 t1=2, t2=4, --------------------4分 经检验都适合, 答 2秒后或4秒后⊿PBQ的面积等于8cm2。-------5分 〔2〕设秒t后PQ⊥DQ, 证⊿PBQ∽⊿QCD, 得, ---------------------3分 解得 t1=t2=3, --------------------------4分 经检验都适合, 答 3秒后PQ⊥DQ。-----------------------------5分 28. 解:〔1〕∵顶点为〔-1,4〕, ∴设所求函数关系式为y=a(x+1)2+4, --------------2分 ∵过点B〔2,-5〕, ∴-5=a(2+1)2+4, a=-1, ---------------4分 ∴所求函数关系式为y=-(x+1)2+4. ---------------5分 〔2〕与y轴交点〔0,3〕,与x轴交点〔-3,0〕,〔1,0〕, --------8分 〔3〕A’(2,4), B’(5,-5), ------------------------------------10分 SΔOA’ B’==15. ---------12分 29.解:〔1〕添加 弧AB=弧BD. ---------------------1分 可得 ∠BDA=∠BCD,   ---------------------2分 又∠DBC=∠DBC, ∴ΔBDC∽ΔBED,   ---------------------3分 ∴.   ---------------------4分 〔2〕D是弧BC的中点.   ---------------------1分 ∵AC是直径,∴∠ABC=90º ---------------------2分 又AB∥OD, ∴OD⊥BC,    ---------------------3分 ∴D是弧BC的中点.   ----------------------4分 〔3〕 四边形AODB是菱形.   ----------------------1分 在半圆中,弧AB=弧BD=弧DC, ∴∠AOB=∠BOD=60º,    --------------------2分 可证ΔAOB,ΔBOD是等边三角形, --------------------3分 ∴AO=OD=OB=BA, ∴四边形AODB是菱形.    --------------------4分 双向细目表〔2023~ 2023学年度第一学期期末考试九年

此文档下载收益归作者所有

下载文档
你可能关注的文档
收起
展开