温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2023
年高
数学
压轴
跟踪
演练
系列
江苏省备战2023高考数学――压轴题跟踪演练系列三
-------------------------------------------------------------------------------------
1.(本小题总分值13分)
如图,双曲线C:的右准线与一条渐近线交于点M,F是双曲线C的右焦点,O为坐标原点.
(I)求证:;
(II)假设且双曲线C的离心率,求双曲线C的方程;
(III)在(II)的条件下,直线过点A(0,1)与双曲线C右支交于不同的两点P、Q且P在A、Q之间,满足,试判断的范围,并用代数方法给出证明.
解:(I)右准线,渐近线
,
……3分
(II)
双曲线C的方程为: ……7分
(III)由题意可得 ……8分
证明:设,点
由得
与双曲线C右支交于不同的两点P、Q
……11分
,得
的取值范围是(0,1) ……13分
2.(本小题总分值13分)
函数,
数列满足
(I)求数列的通项公式;
(II)设x轴、直线与函数的图象所围成的封闭图形的面积为,求;
(III)在集合,且中,是否存在正整数N,使得不等式对一切恒成立?假设存在,那么这样的正整数N共有多少个?并求出满足条件的最小的正整数N;假设不存在,请说明理由.
(IV)请构造一个与有关的数列,使得存在,并求出这个极限值.
解:(I)
……1分
……
将这n个式子相加,得
……3分
(II)为一直角梯形(时为直角三角形)的面积,该梯形的两底边的长分别为,高为1
……6分
(III)设满足条件的正整数N存在,那么
又
均满足条件
它们构成首项为2023,公差为2的等差数列.
设共有m个满足条件的正整数N,那么,解得
中满足条件的正整数N存在,共有495个, ……9分
(IV)设,即
那么
显然,其极限存在,并且 ……10分
注:(c为非零常数),等都能使存在.
19. (本小题总分值14分)
设双曲线的两个焦点分别为,离心率为2.
(I)求此双曲线的渐近线的方程;
(II)假设A、B分别为上的点,且,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线;
(III)过点能否作出直线,使与双曲线交于P、Q两点,且.假设存在,求出直线的方程;假设不存在,说明理由.
解:(I)
,渐近线方程为 4分
(II)设,AB的中点
那么M的轨迹是中心在原点,焦点在x轴上,长轴长为,短轴长为的椭圆.(9分)
(III)假设存在满足条件的直线
设
由(i)(ii)得
∴k不存在,即不存在满足条件的直线. 14分
3. (本小题总分值13分)
数列的前n项和为,且对任意自然数都成立,其中m为常数,且.
(I)求证数列是等比数列;
(II)设数列的公比,数列满足:
,试问当m为何值时,
成立?
解:(I)由
(2)
由得:,即对任意都成立
(II)当时,
由题意知, 13分
4.(本小题总分值12分)
设椭圆的左焦点为,上顶点为,过点与垂直的直线分别交椭圆和轴正半轴于,两点,且分向量所成的比为8∶5.
(1)求椭圆的离心率;
(2)假设过三点的圆恰好与直线:相切,求椭圆方程.
解:(1)设点其中.
由分所成的比为8∶5,得, 2分
∴.①, 4分
而,
∴..②, 5分
由①②知.
∴. 6分
(2)满足条件的圆心为,
, 8分
圆半径. 10分
由圆与直线:相切得,,
又.∴椭圆方程为. 12分
5.(本小题总分值14分)
(理)给定正整数和正数,对于满足条件的所有无穷等差数列,试求的最大值,并求出取最大值时的首项和公差.
(文)给定正整数和正数,对于满足条件的所有无穷等差数列,试求的最大值,并求出取最大值时的首项和公差.
(理)解:设公差为,那么. 3分
4分
. 7分
又.
∴,当且仅当时,等号成立. 11分
∴. 13分
当数列首项,公差时,,
∴的最大值为. 14分
(文)解:设公差为,那么. 3分
, 6分
又.
∴.
当且仅当时,等号成立. 11分
∴. 13分
当数列首项,公差时,.
∴的最大值为. 14分
6.(本小题总分值12分)
垂直于x轴的直线交双曲线于M、N不同两点,A1、A2分别为双曲线的左顶点和右顶点,设直线A1M与A2N交于点P(x0,y0)
(Ⅰ)证明:
(Ⅱ)过P作斜率为的直线l,原点到直线l的距离为d,求d的最小值.
解(Ⅰ)证明:
①
直线A2N的方程为 ②……4分
①×②,得
(Ⅱ)
……10分
当……12分
7.(本小题总分值14分)
函数
(Ⅰ)假设
(Ⅱ)假设
(Ⅲ)假设的大小关系(不必写出比较过程).
解:(Ⅰ)
(Ⅱ)设,
……6分
(Ⅲ)在题设条件下,当k为偶数时
当k为奇数时……14分